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Abstract

Recent studies reveal that attention operates in a rhythmic manner, that is, sampling each location or feature alternatively
over time. However, most evidence derives from top-down tasks, and it remains elusive whether bottom-up processing also
entails dynamic coordination. Here, we developed a novel feature processing paradigm and combined time-resolved
behavioral measurements and electroencephalogram (EEG) recordings to address the question. Specifically, a salient color
in a multicolor display serves as a noninformative cue to capture attention and presumably reset the oscillations of feature
processing. We then measured the behavioral performance of a probe stimulus associated with either high- or low-salient
color at varied temporal lags after the cue. First, the behavioral results (i.e., reaction time) display an alpha-band (~8 Hz)
profile with a consistent phase lag between high- and low-salient conditions. Second, simultaneous EEG recordings show
that behavioral performance is modulated by the phase of alpha-band neural oscillation at the onset of the probes. Finally,
high- and low-salient probes are associated with distinct preferred phases of alpha-band neural oscillations. Taken
together, our behavioral and neural results convergingly support a central function of alpha-band rhythms in feature
processing, that is, features with varied saliency levels are processed at different phases of alpha neural oscillations.
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automatically captured to a location of high saliency (Gottlieb

Introduction et al. 1998; Zhang et al. 2012) and forming a saliency map to

Attention could act on single or multiple items to facilitate infor-
mation processing. Recent studies demonstrate that, instead of
dwelling on multiple items simultaneously, attention tends to
operate in a rhythmic manner, that is, processing each location
or object alternatively over time (VanRullen 2016; Fiebelkorn
and Kastner 2019). In addition to top-down modulation, atten-
tion could also occur in a bottom-up way, for example, being

guide subsequent attentional shifting (Koch and Ullman 1985).
An intriguing hypothesis to be tested is whether bottom-up
processing in terms of different saliency levels would employ a
similar dynamic coordination approach as top-down attentional
modulation does to mediate resource allocation.

It has long been known that the phase of neural oscillation
serves as a key index for rhythmic processing in the brain
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Figure 1. Bottom-up feature processing task. In each trial, a cue display consisting of 8 colored disks (1 in red and 7 in blue, or vice versa) was presented for 50 ms
to manipulate the saliency of color features, for example, red is the salient color in this example. After a variable interval (60:10:550 ms, time-resolved behavioral
measurements), a probe (i.e., bar stimulus) tilted in either clockwise or anticlockwise direction was presented for 200 ms at the center and subjects made a speedy
discrimination on the tilting orientation, regardless of its color. The response duration was fixed at 2000 ms, and next trial started after an additional varied inter-trial
interval (ITI) ranging from 0 to 1000 ms. The idea is that the high-salient color (e.g., red here) would presumably capture attention and speed up the detection of probe
with high- versus low-salient color. The prime display serves as a noninformative cue to reset the dynamics of feature priming effect, in analogy to the peripheral
precue in spatial attentional task. All trials were then classified into high- or low-salient conditions based on whether the probe color was high or low salient in the

preceding prime display, for example, the example trial is a high-salient condition.

(Landau et al. 2015; VanRullen 2016; Fiebelkorn et al. 2018;
Helfrich et al. 2018). The idea is that if neural oscillations indeed
subserve the visual processing by rhythmically modulating the
excitability of neural populations that encode particular location
or feature, we would expect a phase-dependent profile in the
recorded brain signals. Indeed, recent studies have revealed
phase-dependent profiles, particularly in spatial attentional
tasks (Landau et al. 2015; Helfrich et al. 2018). Meanwhile, since
feature-based processing operates across all spatial locations,
that is, enhancing the representation of task-related features
throughout the whole visual field (Maunsell and Treue 2006; Liu
and Hou 2011; Liu 2019), it is not straightforward to directly
infer multifeature attention based on previous space- and
object-based attention literature.

In the present study, we combined time-resolved behavioral
measurements and electroencephalography (EEG) recordings to
examine the rhythmic hypothesis of bottom-up feature process-
ing. Specifically, we designed a novel behavioral paradigm moti-
vated by the classical precueing task in space- and object-based
attention (Fiebelkorn et al. 2013; Song et al. 2014; Jia et al. 2017),
whereby a color singleton (1 high-salient color item in 7 low-
salient color items) acts as a noninformative cue in feature space
to capture attention and would presumably reset the attentional
time course (Fig. 1). As a result, by measuring the behavioral
performance of subsequent probe associated with either high-
salient or low-salient color features at varied temporal lags after
the cue, we could access the fine temporal dynamics of the effect
of feature processing (Theeuwes 2013; Theeuwes and Van der
Burg 2013; Qian and Liu 2015). The behavioral results showed an
alpha-band (~8 Hz) rhythmic profile with a consistent phase lag
between high- and low-salient conditions.

Based on the behavioral results, we further examined their
relationship to the phase of alpha-band neural oscillations,
revealing that the behavioral performance (i.e., RT) was indeed
modulated by the alpha-band phase at the onset of the probes,
for both high- and low-saliency conditions. Importantly, the 2
conditions showed distinct preferred phase coupled to behav-
ioral performance, that is, better behavioral performance (fastest
RT) is coupled to distinct phase of the alpha-band neural oscil-
lations. Taken together, our behavioral and neural recordings

convergingly support the crucial function of alpha-band neural
oscillations in bottom-up feature processing, that is, features
with varied saliency level are sampled at varied phases of alpha
rhythms.

Materials and Methods
Subjects

Thirty-one subjects aged 18-27 (15 females) took part in the
experiment. All subjects had normal or corrected-to-normal
vision and had no history of psychiatric or neurological disor-
ders. The experiment was conducted in accordance with the
Declaration of Helsinki. All subjects provided written informed
consent, which was approved by the Research Ethics Committee
of Peking University, prior to the start of experiment.

Stimuli and Tasks

The experiment was performed in a dark and sound-shielding
room, and the visual stimuli were presented on a Display++
LCD monitor (Cambridge Research Systems) with 1920 x 1080
spatial resolution and 100 Hz refresh rate. Subjects sat at a
distance of 70 cm from the monitor, with their heads stabilized
on a chin rest. Subjects voluntarily started the experiment by a
keypress. In each trial, a visual display (i.e., prime) containing 8
colored disks (radius of 2°) was presented (in 10° visual angle) for
50 ms, and subjects were instructed to maintain central fixation
throughout the whole trial (Fig. 1). Specifically, the color of the 8
disks was set to be either 1 in red and 7 in blue or vice versa (1
in blue and 7 in red), and the disk with deviant color was located
on either the upper or the lower position to the center. Next,
after a varied time interval (stimulus-onset asynchrony (SOA),
60-550 ms in step of 10 ms, 50 SOAs), a colored bar stimulus
(i.e., probe, 1.5° length and 0.33° width visual angle) titled in 3°
to either clockwise or anti-clockwise direction was presented
for 200 ms at the center. Subjects needed to report the tilting
direction as soon as possible by pressing the corresponding key
(left key for anti-clockwise tilt using left hand, right key for
clockwise tilt using right hand) and the reaction time (RT) was
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recorded using a response pad (Cedrus Corporation, San Pedro,
USA). Crucially, the color of the bar stimulus was either red or
blue with equal probability. Note that the color was completely
task-irrelevant since subjects were only instructed to report
the orientation of the probe stimulus. The deviant color was
located in either top or bottom position to avoid left/right spatial
priming effect on subsequent behavioral performance of target
orientation discrimination. The top or bottom position of the
singleton stimulus was orthogonal to the directions of probe
tilt (left or right). Subjects were instructed to respond within
2000 ms after the probe, and next trial would start after an addi-
tional varied interval ranging from 0 to 1000 ms. The luminance
of fixation, disks, and probe were 9.8 cd/m? and the luminance of
background was 0.14 cd/m?. Each subject completed 2000 trials
in total which took about 2.5 h. A forced break was inserted after
every 200 trials.

EEG Data Recording and Preprocessing

EEG signals were recorded simultaneously and continuously
using 2 BrainAmp amplifiers and 64-channel BrainCap (Brain-
Products). Horizontal and vertical electrooculograms were
recorded by 2 electrodes around the right eye. The preprocessing
was conducted using the FieldTrip toolbox (Oostenveld et al.
2011). EEG data were first re-referenced to the average value of
all channels and then offline band-pass filtered between 1 and
40 Hz using a second-order Butterworth IIR filter. Independent
component analysis was then performed to remove eye
movement and other artifact components, and the remaining
components were back-projected to the electrode space. The
EEG signals were next downsampled to 100 Hz. The data were
finally segmented into epochs for each trial with 0.65 s before
and 0.35 s after the onset of the bar stimulus.

Eye Movement Recording and Analysis

All subjects were instructed to keep the number of eye blinks to a
minimum during each trial. Eye movements were continuously
monitored using an EyeLink 1000 eye tracker (SR Research). The
results showed that the subjects maintained good fixation at the
central point (on average across subjects, 98% of eye positions
was within 1° of fixation point) throughout all trials.

Analysis of Behavioral Fluctuations

Experimental trials were first classified into 2 conditions (i.e.,
high-salient, low-salient), based on whether the color of the
probe bar stimulus was the high- or low-salient color in the
preceding prime display in the current trial. For example, when
the prime display contained 7 blue disks and 1 red disk, a bar
probe with red color would be assigned to high-salient condition,
whereas a bar with blue color would be classified as low-salient
condition. Next, for both high- and low-salient conditions, we
calculated the RT time course as a function of prime-to-probe
SOA (60-550 ms in step of 10 ms, 50 SOAs; median across trials).
The behavioral time course was then normalized for each con-
dition and for each subject to remove the individual difference
of mean RT across subjects and conditions. The normalized RT
time courses were zero-padded to 128 data points in length and
then applied by a Hanning window before performing the fast
Fourier transform (FFT) analysis. Amplitude and phase spectra
were derived by taking the absolute value and the phase value
of the complex Fourier coefficients, respectively.

In the frequency domain, oscillations refer to the narrowband
peaks of amplitude above the aperiodic component (i.e., 1/f; also
known as fractal component) (Buzsaki et al. 2013). Therefore,
we parameterized the amplitude spectrum into periodic (i.e.,
behavioral oscillations) and aperiodic signals using the FOOOF
method (Donoghue et al. 2020). Specifically, we first fitted the
amplitude spectrum with an aperiodic function defined by a
slope and an offset. To obtain a measurement of the periodic sig-
nal, we then subtracted this aperiodic function from the original
power spectrum, resulting in an aperiodic-adjusted spectrum,
which would be regarded as the oscillatory components. The
FOOOF toolbox (version 1.0.0) was used to parameterize neural
power spectra for each condition (high-salient and low-salient)
on each subject, separately (Donoghue et al. 2020). Settings for
the algorithm were as follows: peak width limits: (0.5, 12.0);
max number of peaks: inf; minimum peak height: 0.0; peak
threshold: 2.0; and aperiodic mode: “fixed.” Amplitude spectra
were parameterized across the frequency range from 2 to 20 Hz.

The subject-wise amplitude spectra were averaged to obtain
the group-level results. The phase relationship between high-
and low-salient conditions was quantified by the phase differ-
ences (high — low) and its distribution uniformity was tested
using Rayleigh’s test by CircStat Toolbox (Berens 2009).

EEG Modulation of Behavior

In order to test if the ongoing oscillatory activity is related to
behavioral performance (i.e., RT here) in each trial, we band-
pass filtered the EEG signals into 29 equally spaced bins from
2 to 30 Hz (+center frequency/4) using zero-phase fourth-order
Butterworth IIR filter (Fieldtrip toolbox, Oostenveld et al. 2011).
All the trials were included into analysis given the high accu-
racy performance for all subjects. We then applied a Hilbert
transform and extracted the instantaneous phase angles and
amplitudes. For each EEG channel, we binned the phase angles
of each frequency at the probe onset into 36 equally distributed
bins and computed the averaged phase-resolved RT across all
trials within a 90° window centered on every phase bin. To
quantify the nonuniformity of observed RT distribution over
phase bins, we calculated the Kullback-Leibler divergence (K-
L divergence) of the observed distribution against a uniform
mean distribution (Helfrich et al. 2018). To calculate the preferred
phase of EEG for each condition, we fitted the RT distribution
as a function of phase (ranging from —r to 7) using a one-
term Fourier model (fourierl in MATLAB). The phase of the
peak in the fitted curve was defined as the preferred phase. In
addition to phase, we also investigated the effect of amplitude of
neural oscillation on behavioral performance by calculating the
Pearson correlation between the RT and the amplitude at the
probe onset.

Statistical Analysis

The overall accuracy difference between high-salient and low-
salient conditions was tested by the paired-sample t-test. The
overall RT difference between high- and low-salient conditions
was tested by the Wilcoxon signed rank test.

Statistical significance of the amplitude spectrum of the
RT time course was assessed using permutation tests. In each
permutation iteration, we shuffled trials for high- and low-
salient conditions separately to generate the surrogate data,
in each subject. We then performed FFT analysis and applied
the FOOOF algorithm on the surrogate signals to calculate
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Figure 2. Alpha-band rhythmic profiles in behavioral performance. (A) RT time courses (normalized across all SOAs and conditions per subject) as a function of prime-
to-probe SOA (60:10:550 ms) for low- (red) and high-salient (black) conditions in a representative subject (left) and grand-averaged results (right). The shaded areas
indicate the SEM across subjects (N =31). (B) Frequency spectrum (black) and the estimated fractal spectrum component (red) of the RT time course in high- (left) and
low-salient (right) conditions. Note that the spectrum analysis was first performed in each subject before being averaged. The shaded areas indicate the SEM across
subjects. (C) Corrected spectrum (fractal component removed) of the RT time course. The shaded areas indicate the SEM across subjects. Dashed lines indicate the 95%
thresholds (permutation test) after multiple comparison correction for high- (black) and low-salient (red) conditions. Note the significant alpha-band (8-10 Hz) peak
for both conditions. (D) Polar plots of the phase distribution for high-salient (left), low-salient conditions (middle), and their difference (right), across subjects. Note

that the significant phase difference clustered around 30° (red line).

the grand-averaged aperiodic-adjusted spectral amplitude.
This randomization procedure was repeated 1000 times and
yielded a distribution of group-mean spectral amplitude at each
frequency bin, from which the threshold (P=0.05, uncorrected)
was obtained. To correct for multiple comparison, we used a
cross-frequency correction approach (Song et al. 2014), that is,
the maximum threshold value across all frequency bins as the
threshold. The significant alpha-band frequencies were 7.8-
8.6 Hz and 7.8-10.9 Hz for high- and low-salient conditions,
respectively (Fig.2C). We next selected their overlapping
frequency (i.e., 8 Hz) for further analysis. Statistical assessment
of phase difference was conducted using CircStat Toolbox
(Berens 2009). For each subject, the phase difference between
high- and low-salient conditions at the selected frequency
(8 Hz) was computed and then tested using Rayleigh’s test for
nonuniformity (Zar 2010). The phase difference between the
first-half SOAs (i.e., intervals 1-25) and the second-half SOAs
(i.e., intervals 26-50) at the peak frequency (8 Hz) was tested
using V test for nonuniformity with the mean direction was
zero (Zar 2010).

To test the significance of the K-L divergence, we obtained
a surrogate distribution by randomly shuffling the trial order of
RT in each condition for 1000 times. The shuffling process would
disrupt the correspondence between RT and EEG oscillatory
phase. The same calculation of K-L divergence was performed
on the surrogate data. Through examining the percentile of K-
L divergence of observed data in the surrogate distribution, we
obtained the statistical significance of EEG-phase modulation
on behavior (P =1-percentile) in each EEG channel. The P values
were FDR-corrected for multiple comparison across channels
(Benjamini and Hochberg 1995). In the calculation of K-L diver-
gences for all frequencies, the maximum threshold value across

all frequency bins was set as the threshold to correct for multiple
comparisons (Song et al. 2014).

The Pearson correlation coefficients between RT and ampli-
tude of 8 Hz neural oscillation were transformed to Fisher’s z
values first and then tested by one-sample t-test for signifi-
cance and tested by paired-sample t-test for difference between
conditions.

Results
Alpha-Band Fluctuations in Behavioral Performance

Subjects performed well in the orientation task (Accuracy,
mean + SEM: 0.98+0.003 for high salient, 0.98 +0.003 for low
salient; no significant difference between the 2 conditions,
tg)=0.52, P=0.61, Cohen’s d=0.09, paired-sample t-test).
Crucially, the overall RT was faster for probe with high-salient
color than that with low-salient color (RT, mean + SEM: 444 + 12
for high salient, 446 +13 for low salient; significant difference
between the 2 conditions, W=108, P=0.005, ry=—0.56,
Wilcoxon signed rank test), supporting that the feature saliency
manipulation in the present design indeed primed attention in
a task-irrelevant way.

We next assessed the RT temporal dynamics over SOAs. As
shown in Figure 2A (left: one representative subject; right: grand
average results), in addition to an overall decreasing pattern
that is due to expectancy effect (Klein 2000; Song et al. 2014),
the normalized RT time courses (converted to z scores across
all SOAs and all conditions in each subject) showed a rhythmic
fluctuation profile for both high- and low-salient conditions.
Note that all the subsequent spectrum analyses were performed

2202 UoIB\ €2 U0 1s9nB Aq ZE0YSE9/09Z L/9/Z€/2101HE/100199/W00°dNO"dlWSpESE//:SA)Y WOI) PapEOjUMOQ



1264 | Cerebral Cortex, 2022, Vol. 32, No. 6

A High

High Low
120 — 120
1
1
1
B 80 : 80
s 1
3 '
40 ) 40
0 1 1.2 14 1.6 0 0.8 1 1.2 1.4
0.5 06 IODZrceOrﬁle 0.8 10 K-L D.ivergenc.:e x0T Divergience oox10¢
C D High Low High—Low
1
— High 120 %0 106 120 %010 g9 120 %0 10 g9
— Low
In—: 150 5 30 150 5 30 150 5 30
el
Q
N o0
© 180 0 180 0 180 0
£
S
210 330 210 330 210 330
1= . 240 300 240 300 240 300
-pi 0 pi 270 270 270

Phase (radian)

Figure 3. Behavioral performance is modulated by the alpha-band phase in EEG signals. (A) Topographic plots of the alpha-band K-L divergence value (percentile in
the surrogate distribution from permutation tests) for high- (left) and low-salient (right) conditions. Red stars indicate significant channels (FDR corrected P <0.05,
permutation test). (B) Surrogate distribution for K-L divergence value for high- (left; P6 channel) and low-salient (right; P4 channel) conditions in the significant
channels. The dashed black lines indicate the 95% thresholds in the surrogate distributions and the solid red lines indicate the observed K-L divergence values. (C)
Behavioral-optimal alpha-band phase, that is, RT as a function of alpha-band phase in EEG signals for high- (black) and low-salient (red) conditions. Noting that the
2 conditions showed distinct optimal phase. (D) Polar plots of optimal phases (phase corresponding to the shortest RT) distribution across subjects, for high-salient

(left), low-salient (middle) conditions, and their difference (right).

on individual subject before averaging across subject, and there-
fore, the grand averaged temporal course (Fig. 2A, right) would
not necessarily show a clear rhythmic profile given possible
loose phase coherence across subjects. We further performed
the spectrum analysis on the RT time courses in each sub-
ject. First, the nonoscillatory fractal component (1/f component)
was estimated (red line in Fig. 2B; FOOOF algorithm, Donoghue
et al. 2020) and subtracted from the original spectrum (black
line, Fig. 2B). As shown in Figure 2C, both the high- (black) and
low-salient (red) conditions showed a significant alpha-band
peak (~8 to 10 Hz). We then selected the overlapping signifi-
cant frequency (i.e., 8 Hz) between the 2 conditions to test the
phase relationship between them. The phase distributions were
uniform in either high-salient (P=0.105, Rayleigh’s test; Fig. 2D
left) or low-salient conditions (P=0.674, Rayleigh’s test; Fig. 2D
middle). The 2 conditions exhibited significant phase difference
that was clustered around 30° (P=0.001, Rayleigh’s test; Fig. 2D
right).

Taken together, the prime display, although completely non-
informative, captures attention to the salient feature and pre-
sumably resets the oscillations of feature priming effect, leading
to the rhythmic profiles of behavioral performance in both
high-salient and low salient conditions.

Alpha-Band Neural Phase Underlies
Behavioral Fluctuations

After revealing the alpha-band fluctuation in behavioral per-
formance, we next examined its relationship to the concur-
rently recorded EEG signals. A hypothesis is that the rhythmic
performance of high- and low-salient features at behavioral
level arises from the underlying periodic fluctuations of neural

excitability around the probe’s presentation (VanRullen 2016;
Fiebelkorn et al. 2018; Helfrich et al. 2018). To test this idea,
we calculated the alpha-band phase (8 Hz, the same alpha-
band frequency in behavioral performance) of the EEG signals
at the onset of the probe stimuli, in each trial and in each
EEG channel individually. We then binned the phase angles into
36 equally distributed ranges and calculated the corresponding
averaged RTs within each phase bin, for high- and low- salient
probes separately. If RT is indeed dependent on the alpha-
band phase of EEG signals at the onset of the probe, we would
expect a nonuniform RT distribution profile as a function of
alpha-band phase. This was quantified by calculating the K-L
divergence index (Helfrich et al. 2018). As shown in Figure 3A
plotting the topography of K-L divergence results (percentile
within the surrogate distribution after permutation tests), the
alpha-band phase in the right post-parietal area (red stars)
showed significant K-L divergence index for both high- (left) and
low-salient (right) conditions (FDR corrected P <0.05, permu-
tation test), supporting the essential relationship between the
alpha-band phase in EEG signals and behavioral performance
(i.e., RT). Figure 3B illustrates the surrogate distribution for K-
L divergence for high- (P6 channel) and low-salient (P4 channel)
conditions in the significant channels. The dashed black lines
indicate the 95% thresholds in the surrogate distributions and
the solid red lines indicate the observed K-L divergence values.

Furthermore, we examined the optimal alpha-band phase
(i.e., phase that corresponds to the shortest RT) for high- and
low-salient conditions separately. Interestingly, as displayed in
Figure 3C, the 2 conditions showed an out-of-phase pattern,
such as the optimal phase for low-salient probe (red) was
associated with worse performance for high-salient probe
(black), whereas the optimal phase for high-salient probe
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corresponded to worse performance for low-salient condition.
The EEG preferred phases were relatively consistent across
subjects for both high- and low-salient conditions (Fig. 3D left
and middle, Ps<0.001, Rayleigh’s test). The optimal phase
difference between high- and low-salient conditions was
around 250° (Rayleigh’s test for uniformity, P=0.019; Fig. 3D
right). Finally, the optimal phase was robust and not different
across small and large SOA ranges, for both high- (left; V test,
P <0.001) and low-salient (right; V test, P <0.001) conditions
(Supplementary Fig. S1).

To examine whether the alpha-band phase calculated
around probe onset reflected poststimulus-evoked response,
we used a shorter window (from —0.65 to +0.05 s, excluding
the effect of poststimulus-evoked responses that presumably
occurs after 100 ms, Hillyard and Anllo-Vento 1998). The
results confirmed that the alpha-phase modulation was not
due to the poststimulus-evoked responses and appeared
before and around the probe onset (Supplementary Fig. S2).
Furthermore, we compared the poststimulus-evoked responses
between high- and low-salient conditions and did not find any
difference (supplementary Fig. S3), further confirming that the
phase modulations were not affected by poststimulus-evoked
responses.

Taken together, the alpha-band behavioral performance is
accompanied by the alpha-band phase modulation in EEG sig-
nals, supporting the phase-RT modulation relationship. Most
interestingly, the high- and low-salient probes tend to be asso-
ciated with distinct optimal alpha-band phases.

Control Analyses: Other Frequencies
and Alpha-Band Power

We only analyzed the alpha-band neural signals (Fig. 3), given
the observed behavioral rhythms in the alpha-band (Fig. 2).
Meanwhile, it is possible that other neural rhythms are also
involved in the process. To address the issue, we calculated
the K-L divergence in terms of the relationship between
neural phase and behavior in other frequencies. As shown in
Figure 4A, only the alpha-band (~8 to 10 Hz) showed significant
nonuniform modulation relationship to RTs (P < 0.05; Fig. 4B).

Furthermore, previous studies demonstrate that individual
variability in alpha neural oscillations can predict individual
difference in behavior (e.g., Gulbinaite et al. 2017). Motivated
by the findings, we identified the alpha peak frequency (from
7 to 13 Hz) in behavioral performance and that in the EEG
recordings in each subject. The 2 alpha-band peak frequencies
showed significant correlations across subjects, for both high-
and low-salient conditions (Pearson correlation, both Ps < 0.05;
Supplementary Fig. S4).

Finally, we calculated the correlation between RT and the
amplitude of alpha-band neural oscillations. As shown in
Figure 4C, alpha-band amplitude showed significant positive
correlations to RTs for both high- and low-salient conditions
(Fisher’s z=0.07, P<0.001 for high-salient; Fisher’s z=0.06,
P <0.001 for low-salient), and there was no difference between
the 2 conditions (P =0.31, paired-sample t-test).

Discussions

We used time-resolved behavioral measurements and concur-
rent electroencephalogram (EEG) recordings to examine the
temporal dynamics of bottom-up feature processing. First, after
an uninformative cue that attracts attention to a salient feature,

the behavioral performance of the subsequent high- and low-
salient probes displays an alpha-band rhythmic profile with a
consistent phase lag. Second, behavioral performance is further
modulated by the alpha-band phase in the EEG recordings
around the probe. Third, high- and low-salient conditions show
varied optimal alpha-band phases, that is, high- and low-salient
features tend to be processed in distinct phases of alpha-band
neural oscillations. Taken together, the present study provides
converging behavioral and neural evidence speaking to a central
role of alpha-band neural oscillation in feature processing, that
is, features with varied saliency levels are processed at different
phases of alpha neural oscillations.

Although top-down attention has been widely studied, how
bottom-up processing operates in a multi-item context remains
less explored (noting that bottom-up feature attention is still
controversial and varies in different experiment paradigms, for
example, Donovan et al. 2020). In the present study, subject per-
formed an orientation discrimination task and the color feature
was completely task-irrelevant and noninformative but was still
found to be processed automatically via alpha-band rhythm.
Jensen et al. (2012) proposed an oscillation-based model for
the neural representations of unattended items, that is, alpha-
band neural oscillations prioritize and sort unattended visual
inputs in time according to their saliency levels. Specifically,
since alpha-band exerts an inhibitory function, when alpha-
band power gradually decreases, the unattended stimuli would
be disinhibited and in turn activate sequentially based on their
respective excitation levels, leading to an alpha-band phase
code for unattended items (Jensen et al. 2012; Jia et al. 2019). In
the present study, the salient but task-irrelevant color feature
automatically attracts attention and in turn recovers from the
alpha-band inhibition earlier compared to low-salient feature,
leading to an ongoing competition between high- and low-
salient features in the alpha-band rhythm. The observed distinct
optimal phases for high- and low-salient features are also con-
sistent with the model prediction, that is, features with different
saliency levels are recovered from inhibition at different phases
within an alpha-band cycle.

The present study is motivated by previous precueing spatial
attention studies (Landau and Fries 2012; Fiebelkorn et al. 2013;
Song et al. 2014), that is, using uninformative cue to capture
attention to one location and examining following probes at
cued or uncued locations. Here, the singleton in multicolor dis-
play serves as an uninformative cue in feature space, capturing
attention to specific color. The following probe associated with
either high- or low-salient color could thus be used to test
feature attentional capture effects, in analogy to cued or uncued
location in spatial task. Meanwhile, different from precueing
spatial paradigm during which both cued and uncued locations
are present, there is only 1 single-colored probe, which does
not seemingly necessitate a feature-based attentional selection
process. Instead, our paradigm might be more related to feature
priming paradigm (Kristjansson and Campana 2010; Theeuwes
2013) and previous studies have also revealed rhythmic fluctu-
ations in priming behavioral performance (Huang et al. 2015;
Wang et al. 2020). In other words, the salient color in multi-
color display serves as a prime in feature space and influences
subsequent probe performance.

Our results are consistent with previous findings demon-
strating the crucial relationship between oscillatory phase
and visual perception (Busch et al. 2009; Dugue et al. 2011,
Chakravarthi and VanRullen 2012; Ronconi and Melcher 2017),
that is, near-threshold visual perception is dependent on the
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Figure 4. Other frequencies and alpha-band power. (A) RT as a function of phase (x-axis) and frequency (y-axis) for both high- (left) and low-salient (right) conditions.
Note that the phase modulation of RT is specific to alpha-band (~8 to 10 Hz). (B) K-L divergence value (phase-RT) as a function of frequencies. Dashed lines: Corrected
threshold after multi-comparison, for high- (black) and low-salient (red) conditions. (C) Correlations between RT and alpha-band amplitude for high- and low-salient
conditions. Note that the correlation coefficients were transformed to Fisher’s z values.

prestimulus phase of theta- and alpha-band neural oscillations.
Moreover, a recent study by Harris et al. (2018) revealed that
detection of both attended and unattended stimuli relies on the
theta- and alpha-band phases of neural oscillations, supporting
a general role of low-frequency neural rhythms in mediating
attentional resource allocation. Furthermore, we demonstrate
that the alpha-band power is positively correlated with the RT
for both high- and low-salient conditions. This is also in line with
the well-known inhibitory role of alpha-band neural oscillation
(Klimesch 2012; Jensen et al. 2014), such as that the stronger
alpha-band power is associated with lower excitability of neural
network and accordingly worse behavioral performance (Jensen
et al. 2012; Klimesch 2012; Hutchinson et al. 2021). Thus, both
power and phase of alpha-band rhythms contribute to visual
attention, whereby the power reflects general inhibitory level,
and the phase flexibly determines resource organization among
items over time.

Is there any single rhythm for all types of visual perception
and attention? Previous evidence would not support the view
and instead posits that brain oscillations at various rhythms
might work together to mediate information coordination in
the brain (Ronconi et al. 2017). For example, single-item percep-
tion has been found to be more linked to alpha-band rhythm
(VanRullen et al. 2007; Fiebelkorn et al. 2013; Re et al. 2019),

whereas multi-item attention is proposed to entail theta-band
rhythm (Landau and Fries 2012; Song et al. 2014). One way to
reconcile the distinct findings is that alpha-band might serve
as the most basic temporal unit for perception, and when mul-
tiple locations or objects are processed, the overall attentional
sampling frequency would decrease and is determined by the
number of items to be processed, leading to the theta-band
findings (Fiebelkorn et al. 2013; Fiebelkorn and Kastner 2019;
Re et al. 2019). Alternatively, theta-band has been posited to
originate from motion exploration such as saccade and serve
as an independent role in attentional operation by rhythmically
disengaging attention from the current focus-of-attention to
support environment exploration (Bosman et al. 2009; Schroeder
et al. 2010). Recent studies reveal a theta-band rhythmic cou-
pling between visual perception and movements (Tomassini
et al. 2015; Wutz et al. 2016; Benedetto and Morrone 2019),
advocating a generally close link between perception and active
movement. Our previous works have revealed cross-frequency
coupling in both behavioral performance and MEG and EEG
recordings. For instance, each location or object is processed via
alpha-band, and the alpha-band profiles for multiple items are
further coordinated by a theta-band rhythm (Song et al. 2014; Jia
et al. 2017). Interestingly, in a top-down feature attention task,
both behavioral and neural evidence only disclose a theta-band
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rhythmic pattern (Mo et al. 2019; Re et al. 2019). Taken together,
neural rhythms at various rhythms are involved in different
processes, based on task context and to-be-processed properties
(Wutz et al. 2018).

In addition to the alpha-band oscillation, the low-frequency
oscillations (~2 Hz), that is, delta-band, have been found to
reflect rhythmic shifting of neuronal ensembles between high
and low excitability states (Lakatos et al. 2008; Schroeder
and Lakatos 2009). Meanwhile, different from the alpha-band
rhythm, here the low-frequency components in RT were not
modulated by EEG phase. This is consistent with previous
findings (VanRullen 2016), revealing that the phase modulation
mainly occurs in theta (~7 Hz) and alpha band (~11 Hz).
Furthermore, although both behavioral and neural findings
show alpha-band fluctuations, they are not within the exactly
same frequency, that is, lower and more centered for neural
data (Figs 2C and 4B). Interestingly, despite their difference, the 2
alpha-band frequencies exhibited significant correlation across
subjects (Supplementary Fig. S4), still supporting their common
origin.

The phase lag between high- and low-salient conditions cen-
tered around 30° in behavioral measurements but 250° in neural
recordings. The behavioral-neural discrepancy might arise from
other cognitive processes that contribute to final behavioral
performance, such as motor response, decision making, etc.
The individual variability results (Fig. 2D) further support the
notion, that is, inconsistent phase distribution across subjects
and broad alpha-band peak frequency distribution in behavioral
measurements. Future studies are needed to systematically test
the relationship between behavioral and neural rhythms.

Rhythmic processing is involved in many aspects of per-
ception and attention (Jensen et al. 2012; Fiebelkorn and Kast-
ner 2019) across different sensory modalities, including vision
(Drewes et al. 2015), audition (Ho et al. 2017), and sensory-motor
integration (Benedetto et al. 2016; Wutz et al. 2016; Benedetto
and Morrone 2019). At low levels, attention periodically samples
competing stimuli during binocular rivalry (Davidson et al. 2018),
and at high levels, multiple predictions are coordinated by an
oscillation-based temporal organization process (Huang et al.
2015; Guo et al. 2020; Wang et al. 2020). Our results constitute
new evidence that bottom-up feature processing is coordinated
by neural oscillations as well. Notably, feature attention in pre-
vious research shows a slower rhythmic profile (Mo et al. 2019;
Re et al. 2019) when subjects attend to 2 features concurrently,
while here in a bottom-up task-irrelevant context, we mainly
observed an alpha-band pattern. Therefore, different from top-
down modulations, bottom-up feature processing might rely on
the opportunity windows that are bound to varied phases of
alpha-band rhythms to mediate the processing of unattended
features.

In conclusion, the present study, by combining behavioral
and neural recordings, demonstrates that bottom-up processing
samples multiple features in alpha-band rhythms and items
with different saliency levels are processed at varied phases.

Supplementary Material

Supplementary material can be found at Cerebral Cortex online.
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