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We report on N,N-bidentate-chelation-assisted α- and β-olefinic C–H alkenylation of aryl alkenes in

ethanol to afford aryl dienes/trienes with excellent regio- and stereo-selectivities. The reaction of

2-alkenyl benzylamine and benzoic acid derived substrates proceeded through six-membered exo-cyclo-

metallation and seven-membered endo-cyclometallation. The aerobic protocols feature wide functional-

ity tolerance, high selectivities and yields, mild conditions and scalable preparation, and the directing

group can be easily removed to afford Boc-protected amine by simple reduction.

Introduction

In the past decade, chelation-assisted olefinic C–H functionali-
zation provided site- and stereo-selective preparation of alkene
derivatives or (hetero) cycles that proceeds through five- or six-
membered endo-/exo-metallocycles.1 There are generally two
kinds of functional group-directed olefinic C–H activation reac-
tions. One is the vicinal group directed alkenyl C–H activation
that proceeds through five-/six-membered endo-cyclometalla-
tion to afford cis-C–H functionalized alkene derivatives.2

The other one is the geminal group-directed olefinic C–H
functionalization by the formation of exo-metallocycle inter-
mediates.3 For example, the Engle group demonstrated a Pd-
catalyzed olefinic C–H alkenylation of nonconjugated alkenyl
amides to afford highly substituted 1,3-dienes under N,N-
bidentate chelation assistance.3a Carreira and co-workers
developed N,N-bidentate chelation-assisted alkenyl C–H
iodination and alkynylation under palladium catalysis.3b,c

The Dong group demonstrated an elegant Pd/NBE-catalyzed
distal-selective olefinic C–H arylation assisted by an oxime
ether based exo-directing group.3i Our group developed
O-monodentate chelation-assisted alkenyl C–H alkenylation of
simple alkenyl alcohols, amides and carbamates.3d Despite the
efficacy of the chelation-assisted olefinic C–H activation of
simple alkenes, extension of this strategy to the selective C–H

functionalization of more complex and flexible olefinic
systems, such as styrenes or polyenes, is still challenging and
unexplored, owing to their reaction complexity and confor-
mational flexibility (Scheme 1a).

Aryl alkenes such as styrenes occur widely in countless
drugs and natural products, and are often utilized as valuable
synthons and precursors for material preparation.4 Many
efforts have been devoted to the preparation of aryl alkenes;

Scheme 1 Regio- and stereo-selective olefinic C–H functionalization
of aryl alkenes.
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however, the regio- and stereo-selective preparation of styrene
derivatives with high atom economy remains highly sought
after. Transition-metal-catalyzed cross-coupling reactions
between arenes and alkenes or alkynes have been well investi-
gated to afford di- and tri-substituted styrenes by aromatic
C–H alkenylation or alkenyl C–H arylation.5–8 In stark contrast,
although simple styrenes occur widely and are easily accessi-
ble, direct C–H functionalization of simple styrenes to afford
valuable styrene derivatives has attracted much less
attention.9,10 There has been hydroxyl- and amino-directed ole-
finic β-C–H activation/cyclization using 2-vinyl aniline/phenol
substrates, proceeding through the formation of six-membered
endo-metallocycles, in which directed aromatic C–H activation
is impossible due to the disfavored formation of four-mem-
bered metallocycles. For example, Nachtsheim and co-workers
demonstrated a rhodium-catalyzed hydroxyl-assisted alkenyl
C–H alkynylation of 2-vinylphenol substrates using a hyperva-
lent iodine reagent.9a The Mascareñas and Gulías group devel-
oped palladium- or rhodium-catalyzed annulation of o-vinyl-
phenols or 2-alkenyl anilides with alkynes or allenes.9a–f To the
best of our knowledge, while limited examples of group-
directed β-C–H activation have been demonstrated, there is
still no report on chelation-assisted α-C–H functionalization of
styrenes presumably due to the difficult formation of aromatic
exo-metallocycles with increased rigidity and strain under cata-
lytic conditions (Scheme 1b).

Polyenes, used as valuable synthons, are also key structures
of many natural products and pharmaceutically relevant
molecules. With our ongoing interest in olefinic C–H
functionalization,2i–o,3d,e herein, we focus on selective α-/β-C–H
functionalization of styrenes to afford aryl polyenes in a regio-
and stereo-selective manner (Scheme 1c). However, compared
to the well-defined directed alkenyl C–H functionalization,
several new challenges can be envisaged for styrene substrates.
First, more competitive C–H bonds exist in styrene substrates,
including aromatic and alkenyl C–H bonds, which increase the
reaction complexity. Second, the conformational complexity of
the styrene substrate disfavors the desired C–H activation.
Third, the judicious choice of a suitable directing group (DG)
to modulate the reactivity and selectivity is extremely challen-
ging (Scheme 1a and b).

Results and discussion

With these considerations in mind, our initial study started
with C–H functionalization of challenging styrene substrates 1,
4 or 6 derived from 2-vinyl benzyl amide/benzamide/benz-
aldehyde, which includes four competitive reaction sites: three
olefinic C–H bonds and one aromatic C–H bond. In previous
chelation-assisted alkenyl β-C–H functionalization of styrenes,
the α-position of the substrate is generally blocked to obviate
the reaction complexity, and aromatic (ortho) C–H activation
is impossible due to the disfavored four-membered
cyclometallation.9,10 Notably, the only example using plain
2-vinyl phenol substrates still led to benzoxepine products via

β-C–H activation under rhodium catalysis,10c and chelation-
assisted α-C–H functionalization of styrenes remains a signifi-
cant challenge. We initially examined a variety of Rh-, Ru-, Ir-
and Pd-based catalytic conditions for mono O- or N-chelation-
assisted alkenyl C–H functionalization,1–3 using 2-vinyl benzyl
amide/benzamide derivatives, but none of them led to the
desired α-/β-functionalized products.

Inspired by the great success of the N,N-bidentate-chela-
tion-assisted strategy in C–H activation,11 we turned to
examine substrates bearing Daugulis’s 8-aminoquinoline (AQ)
and picolinamide (PA) directing groups as well as their ana-
logues.12 Fortunately, the reaction between AQ-styrene (DG1)
and tert-butyl acrylate was successful, with the combination of
a catalytic amount of Pd(OAc)2/benzoquinone (BQ), a quanti-
tative amount of the oxidant MnO2 and the additive PivOH in
ethanol, leading to the α-C–H olefination product 3a in 69%
yield with excellent selectivity (Table 1, entry 1). No product
generated via β-olefinic or aromatic C–H activation was
observed, exhibiting excellent regio-selectivity. Various solvents
including alcohols such as MeOH, HFIP and CF3CH2OH were
examined, but all of them led to decreased yields (see Table S1
in the ESI†). Electronically biased substituents such as OMe
and Br on 8-aminoquinoline were examined, and both of them
led to decreased product yields (entries 2 and 3). Other repre-

Table 1 Optimization of catalytic conditions using phthalimidea

Entry DG 3 yield (%) 5 yield (%) 7 yield (%) 8 yieldb (%)

1 DG1 69 — — —
2 DG2 61 — — —
3 DG3 25 — — —
4 DG4 30 — — —
5 DG5 0 — — —
6 DG6 <5 — — —
7 DG7 <5 — — —
8 DG8 23 — — —
9 DG9 0 77 — —
10c DG9 36 18 — —
11 DG10 23 — — —
12 DG11,12 — — — —

a Reaction conditions: 1, 4 or 6 (0.15 mmol, 1.0 equiv.), 2a (2.5 equiv.),
Pd(OAc)2 (15 mol%), PivOH (1.5 equiv.), BQ (10 mol%), MnO2 (3
equiv.), and EtOH (1 mL) at 60 °C for 24 h, under air. b Isolated yields.
c 2a (1.25 equiv.) added.
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sentative N,N-bidentate-chelation directing groups (DG4–DG7)
were investigated, but none of them led to satisfactory results
(entries 4–7). Interestingly, although styrene bearing picolina-
mide DG8 led to only α-C–H functionalization in 23% yield,
2-pyrazinamide DG9 produced triene 5a in 77% yield via
α,β-bis C–H functionalization (entries 8 and 9). When the
same reaction was performed using 1.25 equiv. of acrylate, a
mixed mono-alkenylation and bis-alkenylation was obtained,
exhibiting a sequential α- and β-C–H functionalization event in
the formation of 5a (entry 10). While aldehyde derived N,O-
bidentate transient directing group DG10 still led to 23% yield,
simple amides (DG11 and DG12) were ineffective (entries
10–12).

With the optimal conditions in hand, we turned to examine
the generality of the olefinic C–H alkenylation of 2-vinylbenza-
mides 1, bearing 8-aminoquinoline (AQ) as the directing group
(Table 2). Various 3-, 4-, 5- and 6-methyl substituted 2-vinyl
benzamides reacted well with tert-butyl acrylate to afford the
corresponding phenyl dienes in 51–92% yields (3b–3e).
Notably, 3- and 6-methyl substrates afforded 92% and 51%
yields respectively, exhibiting good tolerance of sterically bulky
substrates (3d and 3e). Next, differently mono- and bis-substi-
tuted substrates bearing OMe, F, Cl and CF3 were examined,
and all of them were smoothly converted to afford the corres-
ponding alkenylation products in 41–80% yields, showing a
wide spectrum of functionality tolerance (3f–3n). Notably, the
naphthyl substrate also reacted well, and even alkenyl thio-

phene led to a moderate yield at an elevated temperature (3o
and 3p). Moreover, a series of acrylates were also investigated,
and all of them afforded satisfactory results (3q–3v, 53–65%
yields). The cis-stilbene substrate bearing AQ reacted well with
acrylate to afford 3w in 87% yield. In addition, 2-pyrazinamide
was an effective directing group in α-C(olefinic)–H alkenylation
of cis-styrenes, using acrylate and 4-methoxystyrene as coup-
ling partners (3x and 3y).

Introduction of 8-aminoquinoline (AQ) led to only α-C–H
alkenylation with plain 2-vinyl benzamides; however, α,β-bis
C–H alkenylation products were smoothly obtained by employ-
ing 2-pyrazinamide (PC) as a directing group instead (Table 3).
A series of acrylates coupled well with 2-vinylbenzylamine
derived pyrazinamides 4 to provide phenyl trienes in 54–81%
yields (5a–5e). However, ethyl acrylate led to the formation of a
mixture of triene 5f (71%) and diene 5f′ (21%). The protocol
was successfully applied to various substrates bearing 2-Me,
5-Me, 4-OMe and 3-CF3 substituents (5g–5j, 60–73% yields),
under slightly modified optimal conditions.

Next, we turned to examine the scope of β-C–H functionali-
zation of 2-vinyl benzylamides bearing 2-pyrazinamide (PC) as
the directing group (Table 4). A broad range of electron-
deficient alkenes were suitable coupling partners, including
alkyl/phenyl acrylates, acrylamide, vinyl ketone and vinyl phos-
phate, leading to 84%–99% yields with excellent Z/E selectivity
(7a–7h). Substrates bearing functionalities such as Me, 3-F,
3-CF3 and 4-OMe all afforded the desired products in excellent
yields (7i–7l, 83–99% yields). Notably, both 3- and 6-methyl
substituted styrenes reacted smoothly, indicating that steric
hindrance had little influence on the reactivity, and styrene 7n
was obtained as a racemic mixture of axial chirality. Both
α-ethyl and α-phenyl substituted styrenes reacted well with tert-
butyl acrylate to afford the corresponding dienes 7o and 7p in

Table 2 Substrate scope of α-alkenylationa

a Reaction conditions: 1 (0.15 mmol, 1.0 equiv.), 2 (2.5 equiv.), Pd
(OAc)2 (15 mol%), PivOH (1.5 equiv.), MnO2 (3.0 equiv.), BQ (10 mol%)
in EtOH (1 mL) at 60 °C for 24 h, under air; the yields are isolated
yields. b At 80 °C. c 20 mol% Pd(OAc)2 used.

Table 3 Substrate scope of α- and β-bis-alkenylationa,b

a Reaction conditions: 4 (0.15 mmol, 1.0 equiv.), 2 (2.5 equiv.), Pd
(OAc)2 (15 mol%), PivOH (1.5 equiv.), MnO2 (3.0 equiv.), BQ (10 mol%)
in EtOH (1 mL) at 60 °C for 24 h, under air; the yields are isolated
yields. b 20 mol% Pd(OAc)2 used.

c 12 h.
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99% and 66% yields respectively. Interestingly, 3-vinyl thio-
phene also showed excellent reactivity at an elevated tempera-
ture (7q). All-carbon tetrasubstituted alkenes occur widely in
natural products and pharmaceuticals, but their regio- and
stereo-synthesis still faces significant challenges. Herein, tri-
aryl substituted alkenes reacted well with tert-butyl acrylate
and p-methoxystyrene to afford all-carbon tetrasubstituted
alkenes 7r and 7s in 76% and 62% yields, respectively, with
excellent stereo-selectivity.

On investigating the scalability, gram-scale β- and
α-selective C–H alkenylations were both successful, leading to
7a and 3a in 87% and 69% yields respectively (Scheme 2a and
b). Using a reported method on the deprotection of aminoqui-
noline,13 the removal of the amide moiety in 7a and 5b was
readily accomplished by carbamation and then reduction at
room temperature to give Boc-protected amines 9 and 10 in
84% and 91% yields respectively (Scheme 2c).

Conclusions

In conclusion, we have presented Pd-catalyzed α- and β-olefinic
C–H alkenylation of styrenes with excellent site- and stereo-
selectivity using ethanol as the solvent, assisted by N,N-biden-
tate chelation. The protocol exhibits wide functionality toler-
ance and enables gram-scale preparation, demonstrating its
practicality and versatility. Furthermore, the amide auxiliary
could be smoothly removed to afford Boc-protected amine
under mild reduction conditions. We anticipate that this C–H
functionalization reaction will find broad applicability in mul-
tifarious synthetic endeavors.
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N. Quiñones, J. L. Mascareñas and M. Gulías,
Straightforward Assembly of Benzoxepines by Means of a
Rhodium(III)-Catalyzed C–H Functionalization of
o-Vinylphenols, J. Am. Chem. Soc., 2014, 136, 834;
(d) A. Seoane, N. Casanova, N. Quiñones, J. L. Mascareñas
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