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Dandan Ding™, Wenyu Wang, Junchao Tong, Xinbo Gao"', Senior Member, IEEE, Zoe Liu, and Yong Fang

Abstract—Convolutional neural networks (CNNs)-based video
quality enhancement generally employs optical flow for pixel-
wise motion estimation and compensation, followed by utilizing
motion-compensated frames and jointly exploring the spatiotem-
poral correlation across frames to facilitate the enhancement.
This method, called the optical-flow-based method (OPT), usu-
ally achieves high accuracy at the expense of high computational
complexity. In this article, we develop a new framework, referred
to as biprediction-based multiframe video enhancement (PMVE),
to achieve a one-pass enhancement procedure. PMVE designs
two networks, that is, the prediction network (Pred-net) and the
frame-fusion network (FF-net), to implement the two steps of
synthesization and fusion, respectively. Specifically, the Pred-net
leverages frame pairs to synthesize the so-called virtual frames
(VFs) for those low-quality frames (LFs) through biprediction.
Afterward, the slowly fused FF-net takes the VFs as the input
to extract the correlation across the VFs and the related LFs,
to obtain an enhanced version of those LFs. Such a framework
allows PMVE to leverage the cross-correlation between succes-
sive frames for enhancement, hence capable of achieving high
accuracy performance. Meanwhile, PMVE effectively avoids the
explicit operations of motion estimation and compensation, hence
greatly reducing the complexity compared to OPT. The exper-
imental results demonstrate that the peak signal-to-noise ratio
(PSNR) performance of PMVE is fully on par with that of OPT
while its computational complexity is only 1% of OPT. Compared
with other state-of-the-art methods in the literature, PMVE is
also confirmed to achieve superior performance in both objec-
tive quality and visual quality at a reasonable complexity level.
For instance, PMVE can surpass its best counterpart method by
up to 0.42 dB in PSNR.

Index Terms—Convolutional neural network (CNN), frame
prediction, multiframe, optical flow, video enhancement.
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I. INTRODUCTION

N RECENT years, the demand for ultrahigh-definition

(UHD) video is constantly on the rise. Video compression
plays a crucial role in the storage and transmission of UHD
videos. Generally, the encoder applies compression techniques
to encode the original video into a compressed bitstream for
bit-rate saving, and this bitstream is decoded by the decoder
to reconstruct the video. The lossy compression, which is
universally deployed today, introduces compression artifacts
and inevitably causes quality degradation to the reconstructed
video. An effective solution to reduce artifacts and improve
the quality of the compressed video is through the use of the
postprocessing scheme, applied to those decoded frames to
further improve the video quality subjectively or objectively.

Most recently, the convolutional neural network (CNN)
showed outstanding performance and led the trend in the
exploration of image/video postprocessing [1]. CNN-based
compressed video enhancement was initially inspired by super
resolution (SR), which targets generating a high-resolution
(HR) image from a low-resolution (LR) version. Various SR
networks have been proposed [2]-[9]. By learning the non-
linear mapping between LR and HR images, these networks
are then able to reconstruct the HR image from its LR
counterpart. The image/video enhancement problem can be
resolved in a similar way as done in SR. Following this
spirit, a significant amount of CNN-based schemes have been
proposed.

Dong et al. [10] first developed a four-layer artifacts
reduction CNN (ARCNN) for artifact reduction over JPEG
images. Later on, various kinds of advanced networks such
as [11]-[15] are proposed. These networks are all originally
designed for image restoration, hence unsuitable for com-
pressed video enhancement because the coding techniques
adopted in video compression are generally quite different
from those for images. Recently, some special networks have
been customized for video applications and achieved signifi-
cant gains [16]—[33]. Details of this category of related work
will be further addressed in the next section. These networks
mainly adopt single-frame methods to enhance one frame by
exploring the spatial correlation among pixels within the same
frame. As opposed to the single-frame method, multiframe
enhancement introduces a third dimension, that is, the tem-
poral dimension, in addition to the two spatial dimensions
that represent an image. This third dimension contributes a
fairly large difference for all video-oriented methodologies
compared to those originally designed for images. Along the
temporal direction a high degree of correlation is inherited,
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which can be well-taken advantage of to help improve the
performance of enhancement [34].

As such, the multiframe enhancement is challenging
because it considers both spatial and temporal dimension
information. It is critical to solve the following problems:
1) How to explore the temporal correlation across frames? and
2) How to design a network involving both spatial and tem-
poral information? Another big challenge is the extra compu-
tational complexity introduced while leveraging the temporal
information. A conventional solution is the optical flow-based
method which consists of two steps: 1) frame alignment and
2) frame fusion. In frame alignment, pixelwise motion vectors
between frames are estimated in order to align the neighbor-
ing frames to the current frame. In frame fusion, the aligned
frames and the current frame are fused to generate an enhanced
frame. Lu er al. [35] and Tong et al. [36] followed this man-
ner to enhance the compressed videos. To boost the peak
signal-to-noise ratio (PSNR) or structural similarity (SSIM)
performance, they both adopt FlowNet [37] to acquire accu-
rate optical flow, which greatly increases the computational
complexity. Yang et al. [38] and Guan et al. [39] developed
the multiframe quality enhancement (MFQE) to utilize the
high-quality frames (HFs) neighboring the current low-quality
frame (LF) to enhance the quality of the current frame. To
reduce the computational burden, they employ lightweight
spatial transformer motion compensation (STMC) [34] to gen-
erate the optical flow. Results show that the computational
complexity is reduced but the quality improvement is also
compromised. Bao et al. [40] adapted their motion estimation
and motion compensation-driven neural network (MEMC-Net)
to video enhancement tasks. MEMC-Net directly sends the
optical flow, interpolation kernels, and contextual features
to the frame fusion stage, along with the warped frames,
to generate enhanced frames, which produces a fairly large
network.

The above analysis shows that compared with single-frame
methods, the superior performance of multiframe methods
largely benefits from the use of optical flow. Nonetheless,
optical flow requires the pixelwise motion estimation and
compensation; therefore, good performance has been achieved
at the expense of high computational complexity. Besides,
more gains may be available if more neighboring frames
are involved in the enhancement. But more computational
resources are accordingly required. A balanced frame selection
strategy is expected, which has not been extensively discussed
in the existing work.

To tackle all aforementioned issues, we develop a new
multiframe approach for compressed video enhancement,
aiming to achieve a balanced tradeoff between enhance-
ment performance and computational complexity. We pro-
pose the biprediction-based multiframe video enhancement
(PMVE) scheme, in which each current frame is enhanced
by the virtual frames (VFs) synthesized from selected frame
pairs. Relative to the optical-flow-based method, PMVE
completely excludes the use of motion estimation and com-
pensation operations, aiming to achieve superior enhance-
ment performance while maintaining acceptable computational
complexity.
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The main contributions of this article are summarized as
follows.

1) We propose a biprediction-based approach, called
PMVE, to enhance the quality of the compressed video.
PMVE first identifies the LFs, then creates the VFs
through biprediction from selective neighboring frame
pairs of the LFs, and finally enhances the LFs using
these VFs. Such a new design avoids the explicit use
of motion estimation and compensation, but still effec-
tively takes advantage of the cross-frame information.
Hence, our PMVE can maintain reasonable complexity
while achieving superior performance.

2) We develop a learning-based two-step framework,
namely, synthesization and fusion, to effectively imple-
ment PMVE. The prediction network (Pred-net),
together with a balanced prediction strategy, is proposed
for VF synthesization. Afterward, the slowly fused
frame-fusion network (FF-net) is utilized to explore the
spatiotemporal features jointly.

3) We thoroughly evaluate the performance of our
approach. We compare our PMVE against various
single-frame and multiframe-based methods. Besides,
we implement a high-accuracy optical-flow-based
approach (OPT) for comparison. Comprehensive results
prove the superiority of our approach in both objective
quality and visual quality at a reasonable complexity
level.

The remainder of this article is organized as follows.
Section II introduces the related work. The motivation behind
this article is presented in Section III. Our proposed PMVE
approach is depicted in Section IV. The training and test pro-
cedure of our approach are described in Section V. Then,
Section VI shows our experimental results. Finally, Section VII
concludes this article.

II. RELATED WORK

Existing approaches for compressed video enhancement
mainly focus on exploiting the pixel correlations within a
single frame. To take advantage of the information provided
by neighboring frames, multiframe-based enhancement is
developed, which is similar to multiframe SR (MFSR) to a cer-
tain extent. For example, they both take the degraded frames as
input and generate an upgraded counterpart except that video
enhancement produces a high-quality version while SR pro-
duces an HR version. The challenges they face nonetheless are
different. More specifically, compressed video enhancement
aims to remove the artifacts introduced by video compres-
sion techniques and restore a frame as close to its original
version as possible, whereas SR is an ill-posed problem that
creates new pixels in the resulting HR version. In this sec-
tion, after the introduction of single-frame methods, we will
further review those approaches of multiframe-based SR and
multiframe enhancement, respectively.

A. Single-Frame Quality Enhancement

Encoder Side: Some CNN networks are applied at the
encoder side to replace the anchor in-loop filtering algorithm
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[16]-[18], or to add a high-dimensional filter to the anchor
in-loop filtering [19]-[22], or to switch between the CNN-
based and the traditional filters [23]-[29], to further improve
the quality of reconstructed frames. Conducted at the encoder
side, these methods modify the in-loop filtering algorithms
and generate bitstreams that are not standard aligned anymore.
This largely prevents such approaches from wide deployment
in the real applications, as existing decoders adopted in major
video players are, in general, only capable of handling standard
bitstreams.

Decoder Side: In contrast, some schemes are proposed to
enhance the compressed videos at the decoder side by postpro-
cessing [30]-[33]. They are all single-frame methods, where
CNNs are designed to explore only the spatial correlation
among pixels within a single frame. The temporal correlation
across frames is not utilized, which limits the performance of
quality enhancement.

B. Multiframe Super Resolution

The essential idea behind MFSR is to take advantage of
the similarities across multiple LR video frames to construct
a single HR frame. In the following, we will review different
solutions to the MFSR problem.

Traditional Methods: In the early time, Baker and
Kanade [41] employed optical flow to model the temporal
dependency across frames, proving the effectiveness of opti-
cal flow in solving the MFSR problem. Afterward, numerous
methods are developed to improve the optical-flow algo-
rithm [42]. Although these algorithms can accurately model
the motion across frames, they introduce high computational
complexity. Some methods, such as [43] and [44], try to
avoid motion estimation by employing nonlocal mean and
3-D steering kernel regression. As a result, the computa-
tional complexity is reduced at the expense of frame quality
degradation.

CNN-Based MFSR: Lately, many CNN-based MFSR
solutions have been proposed. Greaves and Winter [45]
skipped the motion estimation step and directly concate-
nated several frames together for frame fusion. Furthermore,
Huang et al. [46] employed a bidirectional recurrent convo-
lutional network for SR. Without motion compensation, it is
challenging for a single network to sufficiently learn the depen-
dencies across multiple frames. For example, Greaves and
Winter [45] found that without dealing with motion, the use
of more than two adjacent frames will yield worse results,
compared to the use of one adjacent frame. To this end,
Kappeler et al. [47] adopted a two-step approach where an
optical-flow estimation is first applied for frame compensation
and then a three-layer video SR network (VSRNet) is designed
for frame fusion. Recently, Yi et al. [48] proposed to embed
the convolutional long short-term memory (ConvLSTM) into
ultradense residual blocks (ResBlks) to extract and retain spa-
tiotemporal correlation. Then, a multitemporal information
fusion strategy is adopted to merge the temporal feature maps
extracted from consecutive frames for SR. Wang et al. [49]
proposed the multimemory CNN (MMCNN), cascading an
optical-flow network that is sped up by a motion transformer
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operator and an image-reconstruction network with multimem-
ory blocks. These studies take advantage of the spatiotemporal
information and achieve significant improvement. It can be
seen that motion estimation and compensation are essentially
beneficial for promoting the quality of MFSR.

C. Multiframe Video Quality Enhancement

General Purpose Video Enhancement: Lately, video quality
enhancement has received significant attention. For example,
Wang et al. [5] proposed a video restoration framework with
enhanced deformable networks (EDVRs), where a pyramid,
cascading, and deformable alignment module is devised for
frame alignment and a temporal and spatial attention fusion
module is employed for subsequent restoration. Bao et al. [40]
further extended their MEMC-Net framework for video quality
enhancement. The neighboring frames are warped through a
warping layer, where both optical flow and interpolation ker-
nels are integrated. Afterward, the warped frames, together
with the optical-flow results, interpolation kernels, and contex-
tual features, are all fed into the frame enhancement network.
Regardless of the quality fluctuation across video frames,
EDVR and MEMC-Net directly utilize the prior N and the
following N frames to enhance the frame in between. As
a result, they perform well, in general, enhancement tasks,
such as video SR, denoising, and deblocking, but still leave
large room for further improvement specifically on compressed
video enhancement.

Compressed Video enhancement: Compressed video
enhancement aims to reduce the artifacts introduced by video
compression. A natural way is first employing optical flow
for motion estimation and compensation and then conducting
enhancement. Lu er al. [35] followed this way to design a
framework, where only the prior frame is involved for the
current frame enhancement. Considering that there is frame
quality fluctuation in compressed videos, Yang ef al. [38] and
Guan et al. [39] designed the MFQE method, which utilizes
the peak quality frames (PQFs) in a video to enhance the
non-PQFs. MFQE adopts two steps within its framework,
that is, motion compensation subnet (MC-subnet) and quality
enhancement subnet (QE-subnet). After detecting the PQF,
the non-PQF and its two nearest PQFs are fed into the MFQE
network, where the motion between the non-PQF and its
nearest PQFs is first compensated through the MC-subnet
and subsequently the compensated frames and the frame to
be enhanced are fused by the QE-subnet. MFQE has demon-
strated a higher PSNR performance over most single-frame
solutions, but there is still potential to further improve the
enhancement performance beyond what MFQE has achieved.
For example, two PQFs are involved in enhancing each
non-PQF while the non-PQFs near the current frame have
been excluded, hence, the cross-frame correlation information
may not have been sufficiently utilized. Another potential
for improvement lies in the MC-subnet, which employs a
lightweighted STMC to estimate the optical flow. Such kind
of MC-subnet may not be particularly effective when dealing
with those frames with diverse motion and abrupt brightness
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Fig. 1. Proposed learning-based framework. (a) Conventional optical flow-based method. (b) Block diagram of the proposed PMVE approach. (c) Details of

the proposed PMVE approach. Here, high-quality frame indicates the HF, medium-quality frame is the MF, low-quality frame is the LF, and VF implies the
virtual frame.

change, which might limit the enhancement performance of
MFQE.

Different from all the above methods which explicitly uti-
lize optical flow, this article proposes a biprediction-based
approach—PMVE, which can generate frames of higher qual-
ity without the explicit use of optical flow-based motion
estimation and compensation.

III. MOTIVATION BEHIND THIS ARTICLE

Inspired by the related work, we propose the PMVE scheme
for compressed video enhancement. Our motivation behind
this article is described as follows.

1y

2)

In this article, we target to leverage the potential inherent
in the temporal domain. A two-step framework, which
has shown its superiority in previous work, is adopted.
As described in Fig. 1, the first step is preprocessing
and the second is frame fusion. For accurate modeling,
both stages within the framework are developed through
learning technology.

In preprocessing, a method is expected to effi-
ciently extract and collect the temporal information.
The previous work generally resorts to optical flow,
which can obtain pixelwise motion information. Then,
neighboring frames are compensated on the basis of
such motion information, as illustrated in Fig. 1(a).
Obviously, in such scenarios, the performance largely
depends on the quality of optical flow. For accurate
modeling, a complicated estimation operation is usually
conducted, which requires high computational resources.
On the other hand, more neighboring frames are usu-
ally involved in video enhancement to achieve better
gains. But more computational resources are accord-
ingly required. Essentially, the neighboring frames are
similar and abundant redundancy exists in the tempo-
ral information they provide, especially for compressed
videos where frames have high reference dependencies.
Therefore, high performance can be achieved and the

complexity can be maintained at a reasonable level if we
can extract and utilize the information across multiple
frames in an efficient manner. Following the above anal-
ysis, we may formulate the information extraction and
collection as a single learning operation. Inspired by
the techniques behind frame interpolation and extrapola-
tion [40], [50], [51], we propose to extract the temporal
information in a biprediction manner, that is, we try
to predict the current frame through learning from its
prior and following neighboring frames, even without
the need of utilizing the current frame. The predicted
frame is essentially an inference of the current frame,
so called the VF, containing abundant relevant temporal
information helpful for the enhancement of the cur-
rent frame. Relative to the optical flow-based method,
the biprediction scheme can involve more neighbor-
ing frames for enhancement without increasing the
computational complexity.

3) In frame fusion, it is critical to develop a CNN struc-
ture taking full advantage of the obtained temporal
information. But on the other hand, due to the restric-
tion of available memory, both the depth of CNN and
the number of network parameters have to be lim-
ited. A large amount of parameters or an unreasonable
network structure will also have a large probability lead-
ing to the overfitting problem and instead deteriorating
the performance. Hence, it is needed to design a CNN
approach that can well balance the CNN depth and the
total number of network parameters.

IV. PROPOSED PMVE APPROACH
A. Framework of PMVE

Fig. 1(b) shows the block diagram of our proposed PMVE
approach. After decoding the compressed bitstream, we obtain
the reconstructed frames and their base quantization param-
eter (QP) values. The quality identification module detects
the quality of these frames according to their QPs. As in
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Algorithm 1: Pseudocode of Our PMVE Approach

Input:

e Fiiq1, -+, Fiyp: L successive frames in a video

e OPii1,---,QPiyr: the base QP values of L frames
Output:

e EFji1, -+, EF;y: the enhanced L frames

Intermediate Variables:
e idx_HF: frame index of the identified HF
e idx_MF: frame index of the identified MF
o VF;, (i =1,2): the predicted virtual frames
Initialization:
o idx_start =0
while not at the end of the input video do
for (idx=idx_start+1; idx < idx_start+L; idx++) do
idx_HF = find_highest(QPjgy);
L idx_MF = find_second_highest(QP;qy);

EFiqx_gr = SVE_net(Figx_fF);

EFiqx_mr = SVE_net(Figy_mF):

/*Recursively enhance the LFs between HF and MF*/
process(idx_start, idx_MF);

/*Recursively enhance the LFs between MF and HF*/
process(idx_MF, idx_HF);

idx_start = idx_HF,

Function process(start, end)
If |start — end| <=1 then
return;
mid = (start + end)/2;
VF| = Pred_net(Fsart, Fend);
VFy = Pred_net(Fpig—1, Finid+1);
EFpiq = FF_net(Fpiq, VF1, VF?);
process(start, mid);
process(mid, end);
EndFunction

Fig. 1(c), only the LFs will proceed through the synthesiza-
tion and fusion steps, both of which are learning based. All
other frames, that is, the HFs and the medium-quality frames
(MFs), in contrast, will be enhanced directly by the single-
frame video enhancement (SVE). Our SVE consists of one
convolutional layer, ten cascading ResBlks, and one output
layer (Table I). The pseudocode describing the flow of our
approach is provided in Algorithm 1.

B. Frame Quality Identification

In practical video applications, very noticeable quality fluc-
tuation exists across compressed video frames. There are
generally several LFs between two HFs. Hence, the HFs can
be employed to enhance the LFs since the HFs carry more
abundant details, which are helpful for the restoration of LFs.
Then, it becomes a problem that how to identify the quality
levels of frames in a video.

In this article, we identify the quality level of a given frame
from its base QP value. For each compressed frame, a base
QP is immediately available after decoding without extra cost.
The QP value of each coding block within a frame is allowed
to slightly change from the base QP value but not differ sig-
nificantly. The base QP value hence potentially dominates the
quality of a frame. For a group of successive decoded frames,
we follow Algorithm 1 to identify the LFs and the HFs/MFs.
Starting from the identified LFs, we develop a PMVE approach
for multiframe enhancement, as described in the following.
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TABLE I
STRUCTURE OF TYPICAL VARIATIONS FOR FF-NET AND
OUR SVE NETWORK

Direct fusion: 421k params Early fusion: 485k params
Filter Filter Filter Filter
Layers . Layers .
size number size number
conv 1/2/3 I x3 128 conv 1/2/3 3 x3 64
- - - conv 4 1x1 64
1x1 64 1x1 64
ResBlk x 9 3 x3 64 ResBlk x7 3x3 64
1x1 128 1x1 64
conv end 5x5 1 conv end 5x5 1
Slow fusion: 435k params SVE: 452k params
Filter Filter Filter Filter
Layers . Layers .
size number size number
conv 1/2/3 3x3 64 conv 1 3x3 64
conv 4/5 1x1 64 - - -
conv 6/7 3x3 64 - -
conv 8/9 3x3 64 - - -
1x1 64 1x1 64
ResBlk x 5 3 x3 64 ResBlk x10 3 x 3 64
1x1 128 1x1 64
conv end 5 X5 1 conv end 5 X5 1

C. Preprocessing

1) Conventional Optical Flow-Based Method: Because
there usually exists motion across HFs and LFs in a video, it
has been widely adopted to employ a model to explicitly com-
pensate interframe motion. The optical flow could be an ideal
candidate. As described in Fig. 1(a), the optical flow-based
method, referred to as OPT, first feeds a pair of HFs neigh-
boring to the current LF into the motion estimation network,
where two flow fields relative to the LF are generated. Each
flow field consists of the pixelwise motion vectors (MV, and
MYV,) in a frame. Pixels in the two frames are then displaced
according to the corresponding flow field. Consequently, we
obtain two compensated frames. Suppose that the kth HF is
denoted as HF} and its compensated version is denoted as
HF,, we can obtain HF; through

HF}, = Bilinear(HFy (x + MV, y + MV,)) @

where Bilinear(-) is the bilinear interpolation function that is
employed to deal with the scenario when (MV,, MV,) are
fractional values.

Afterward, the two compensated frames HF /1 and HF/2 are
sent into the multiframe CNN model, together with the LF to
be enhanced.

2) Biprediction Synthesization: As can be seen that the
motion estimation and compensation operations in OPT are
inefficient. Besides, to enhance an identified LF, only a pair
of HFs are utilized, missing the information from neighbor-
ing LFs. To address such issues, we propose a biprediction
synthesization process. By learning the inherent motion char-
acteristics across frames, the “prediction” module can infer
the positions where the objects will occur in the current LF
and then produce a VF, namely, VF in Fig. 1. As such, it is
essential to design a prediction method for VF inference.

Architecture of Pred-net: In this article, we develop a
network called Pred-net to predict the VFs. It adopts a widely
used encoder-decoder structure [52]. As shown in Fig. 2, con-
volutions and downsampling are performed at the encoder and
upsampling and convolutions are performed at the decoder.
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Fig. 2. Proposed Pred-net which adopts the encoder-decoder architecture.

Two pixel-adaptive kernels, namely, K, and K, are esti-
mated for the two input frames F and F, and the output VF
is obtained by summing up their warped results through

VE(x,y) = Kp1(x, y) * P1(x,y) + Kpo(x, y) * Pa(x, y) - (2)

where Pji(x,y) and P>(x,y) denote the patches centered at
position (x, y) in frames F| and F», respectively.

Suppose the size of kernels is S, ideally S?> parameters
are needed for each 2-D kernel. To reduce the memory
requirement, we follow the idea in [51] to separate the 2-D
convolutional kernels into a pair of 1-D kernels, namely, one
vertical kernel and one horizontal kernel. As such, only 2§
parameters are required for one kernel, largely reduced from
the original requirement of S2. In this article, out of extensive
experiments, we empirically set the kernel size as 51. Although
some previous work such as Bao et al. [40] employed a smaller
kernel size than our Pred-net, it additionally integrates optical
flow to help handle large motions. On the contrary, our method
enlarges the kernel size and produces VFs only through the
Pred-net and hence, a relatively larger number is selected.

Balanced Prediction Strategy: As mentioned above, there
are generally several LFs between two HFs. The prior work
generally employs two HFs to help enhance the LFs in
between. Taking the random access (RA) coding scenario
of H.265/HEVC reference software HM for example, as
described in Fig. 3, the red frames are HFs and the blue ones
are LFs to be enhanced. In a group of pictures (GOP), where
the picture order count (POC) is numbered from 1 to 8, it is
natural to employ HFs of POC = 0 and POC = 8 to enhance
LFs labeled from POC = 1 to POC = 7. However, we find that
the frame distances between an LF and its two neighboring
HFs are usually asymmetrical, indicating that the LF can be of
lower temporal correlation with one of the HFs. Meanwhile,
it is certain that the LF is in close relationship with its nearest
neighbors, although the neighbors are usually of low quality.
To cover both frame correlation and frame quality, here we
propose a balanced strategy in the biprediction process.

1) We introduce the MF, called MF, to our synthesization
for a tradeoff between frame distance and frame quality.
Instead of only using HFs to enhance the LFs, MFs are
utilized in our synthesization since they are closer to
LFs. For example, in Fig. 3, LF_2 is far away from HF_8
but close to MF_4. We hence employ {HF_0, MF_4}
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Fig. 3. Proposed prediction strategy which is applied to the hierarchical
prediction structure of HM. One or two VFs are predicted for each LF to
be enhanced. POC is the picture order count and GOP denotes the group
of pictures. For example, for LF_1, HF_0 and LF_2 are used to produce a
VF, namely, VF_1; for LF_2, HF_0 and MF_4 are employed to generate one
VF, namely, VF_21, and LF_1 and LF_3 are used to produce the other VF,
namely, VF_22; and in term of LF_3, LF_2 and MF_4 are used to synthesize
one VF, namely, VF_3.

instead of {HF_0, HF_8} to enhance the remaining LFs
in between.

2) We utilize two pairs of neighboring frames for enhance-
ment. Since the neighboring LFs and the current LF are
highly correlated, up to two frame pairs neighboring the
current LF are leveraged to predict two VFs. As such, the
correlation across frames is explored from two aspects:
a) a pair of HF and MF is employed to generate one
VF, exploring the benefit from high-quality frames and
b) a pair of nearest frames to the current LF are used
to synthesize the other VF so as to take full advantage
of the information provided from the nearest frames.
We take the hierarchical prediction structure in HM as
an example to show the proposed selection strategy of
frame pairs. As illustrated in Fig. 3, a key frame (red in
Fig. 3) together with all the frames between its prior key
frame and itself build a GOP. Frames within a GOP are
hierarchically predicted. Generally, the frames used as
references for the coding of other frames possess higher
quality (of smaller QP values) than the other frames, as
reference frames of higher quality would usually lead
to an overall more ideal rate-quality performance. In
Fig. 3, for LF_2, in addition to the VF VF_21 generated
from frame pair {HF_0, MF_4}, a pair of LFs {LF_l1,
LF_3} is employed to produce the other VF VF_22.
Both VF_21 and VF_22 are employed to enhance LF_2.

3) But for those LFs whose nearest neighbors already con-
tain HFs or MFs, only the nearest frame pair will be
employed for synthesization. For example, in Fig. 3, for
LF_3, only a pair of {LF_2, MF_4} are employed. The
other frame pair, that is, {LF_1, LF_5} is not only of
low quality but also far away from LF_3, which will
provide no further benefit for the enhancement of LF_3.

D. Frame Fusion

Given the VFs, the current LF can be enhanced by the
frame fusion network FF-net. Generally, there are three ways
to deploy the CNN structure of FF-net, including direct fusion,
early fusion, and slow fusion. Direct fusion directly col-
lapses all temporal frames together and sends them into a
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Fig. 4. Structure of our proposed FF-net (left) which adopts a slow-fusion
manner, and the detail within one ResBlk (right). There is an ReLU opera-
tion after each convolution except the last layer, which is ignored here for
simplicity.

TABLE 11
PSNR (DB) COMPARISON OF DIFFERENT FF-NET STRUCTURES

Class H.265/ Direct  Early Slow
o HEVC fusion fusion fusion

A 32.74 33.28 33.28 33.31

B 33.26 33.54 33.54 33.55

C 30.18 30.50 30.50 30.53

D 29.92 30.33 30.32 30.36

E 36.59 37.17 37.16 37.19
Average 32.33 32.73 32.72 32.75

single-frame network. In early fusion, each frame is first pro-
cessed by a convolutional layer for shallow feature extraction
and then the generated feature maps are concatenated to go
through a single-frame CNN. Slow fusion merges the temporal
information progressively in a hierarchical manner.

On the basis of the residual network [53], we develop three
CNN structures, following the above fashions. For a fair com-
parison, we keep a similar amount of parameters in the three
CNNs, as described in Table I. The three CNN models are
trained with our training set described in Section V-B and
the average performance in 18 common test sequences of
H.265/HEVC is provided. Notice that only the first frame
of each sequence is tested. We can see from Table II that
the slow fusion provides efficiency advantages relative to the
early fusion and direction fusion. Our result is in line with the
conclusion presented in MFSR, where Kappeler et al. [47]
and Caballero et al. [34] have verified that the slow fusion
performs the best. In our experiment, no significant gain is
observed from the early fusion compared to direct fusion.

We hence design our FF-net in the slow-fusion fashion,
as illustrated in Fig. 4. The first layer is for shallow fea-
ture extraction, the next six layers are for slow fusion, and
the remaining layers are for feature enhancement. In the stage
of shallow feature extraction, two VFs and the current frame
are fed into separate convolutional layers. Subsequently, fea-
tures from two convolutions are concatenated as two parallel
branches and go through several convolutions. Then, all chan-
nels are gathered to cross five cascading ResBlks for further
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nonlinear mapping. Finally, the output frame is generated
through a 5 x 5 convolution.

V. TRAINING AND TEST PROCEDURES
A. Loss Function

As illustrated in Fig. 1, we denote two VFs output from the
Pred-net as VFy 1 and VFy 5, the current LF as LFy, and its
original frame as LF,?T. The enhanced LF is represented as
LF. Then, the overall loss function of our approach can be
described as

[fpred

Sl = Lo (v 1587
i=1

Ly

+ B HLF,Q —LF,?THZ. 3)

As can be seen that our overall loss function is a linear
combination of Lpreq and Ly, which are the losses of Pred-net
and FF-net, respectively. During the training, we first set 8 —
0 and @« — 0.5 to train the Pred-net. Notice that we expect
the Pred-net to concentrate on the task of frame synthesis. If
the reconstructed LF is used in Lpreq for training, the Pred-
net would learn to handle both encoding artifacts and frame
prediction simultaneously, resulting in a training task that is
too challenging to obtain an effective network. Therefore, we
employ LFUT to train the Pred-net, ensuring the prediction
procedure can be accurately modeled. Besides, to overcome
the oversmoothing problem introduced by the ¢, norm, we
adopt £ norm in Lyed. When the Pred-net converges, we set
the weights « — 0 and § — 1 to train the FF-net which uses
the £, norm optimization.

B. Training Dataset

In our experiments, we use 118 uncompressed video
sequences for network training. Each sequence is encoded
using the H.265/HEVC reference software HM16.9, at QP
values {22, 27, 32, 37}, to obtain the reconstructed videos.

To build the training database, the first 200 frames of
each of the 118 sequences are encoded with the default
RA configuration encoder_randomaccess_main.cfg and low
delay P (LDP) configuration encoder_lowdelay_P_main.cfg of
HM16.9. When selecting frames to train the Pred-net and the
FF-net, because adjacent frames are quite similar to each other,
an overfitting problem may occur if all frames are contained
in the training dataset. To address this issue, we propose a
robust training strategy, where the orders of HF and MF are
frequently switched for the sake of robustness. As illustrated
in Fig. 3, in the first GOP, we select frames from POC = 0
to POC = 4 as a set of training data. In the second GOP,
frames from POC = 12 to POC = 16 are selected. By reorder-
ing frames from different GOPs in this manner, the trained
network will show higher robustness in use.

Furthermore, taking the first GOP in HM as an example,
we detail our training strategy. To train the Pred-net, we
select four groups of original frames {(frame_0, frame_2),
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TABLE III
BD-RATE (%) COMPARISON WITH STATE-OF-THE-ART METHODS (BD-RATE CALCULATED AT QPs 22, 27, 32, AND 37)
Single-frame methods Multi-frame methods
Class Sequence ARCNN DnCNN VRCNN DSCNN DCAD OPT
[10] [13] [17] B31] [30] SVE 04  FPMVE
A PeopleOnStreet —4.68% —9.03% —6.94% —8.12% —10.00% —9.64% —11.37% —11.44%
Traffic —5.28% —8.44% —7.39% —8.24% —9.53% —9.32% —10.55% —10.14%
BasketballDrive —1.77% —6.41% —3.85% —5.77% —7.79% —6.98% —8.43% —7.94%
BQTerrace —2.85% —8.24% —6.79% —8.24% —10.68% —9.64% —10.94% —10.53%
B Cactus —4.51% —8.86% —7.28% —8.37% —10.04% —9.62% —10.74% —10.73%
Kimono —2.29% —5.42% —4.12% —5.00% —6.13% —5.93% —7.80% —7.17%
ParkScene —3.55% —5.79% —4.95% —5.62% —6.34% —6.15% —8.09% —7.49%
BasketballDrill —0.93% —6.75% —5.01% —6.21% —8.44% —7.91% —8.69% —9.04%
Ie BQMall —0.61% —5.49% —4.40% —4.92% —7.06% —6.48% —7.53% —8.21%
PartyScene +4.26%  —2.84% —-1.21% —-1.33% —3.51% —2.92% —4.23% —4.19%
RaceHorsesC —2.42% —4.87% —4.01% —4.56% —5.58% —5.30% —6.69% —6.30%
BasketballPass —0.39% —4.77% —3.94% —4.73% —6.11% —5.78% —7.05% —7.87%
D BlowingBubbles +0.05% —4.53% —-3.23% —4.05% —5.39% —5.06% —6.44% —6.71%
BQSquare +7.49% —6.49% —2.62% —3.45% —7.54% —6.11% —8.01% —7.75%
RaceHorses —3.78% —6.89% —5.82% —6.58% —7.81% —7.50% —9.08% —9.02%
FourPeople —5.93% —10.79% —9.49% —10.99% —12.91% —12.74% —13.19% —13.21%
E Johnny —4.24%  —9.68%  —8.52% —9.81% —11.64% —11.15% | —12.12% —11.97%
KristenAndSara —5.40% —9.46% —8.76% —9.77% —11.49% —11.36% —12.46% —12.21%
Average —2.05% —6.93% —5.46% —6.43% —8.22% —7.76% —9.08% —9.00%
frame_1}, {(frame_0, frame_ 4), frame_ 2}, {(frame_l1, Our test is conducted on a computer with Intel CPU

frame_3), frame_2}, and {(frame_2, frame_4), frame_3} to
our dataset. In this way, we establish a training set for the
Pred-net, which includes 7600 pairs of training frames.

When the Pred-net converges, we send the selected frame
pairs to the Pred-net to predict the VFs. Following the above
example, {HF_0, MF_4} and {LF_1, LF_3} are fed into the
Pred-net to generate VF_21 and VF_22 for LF_2. A set of
training data {VF_21, VF_22, LF_2} is then formed for the
FF-net training. As such, a database including 5700 sets of
training data is established. Notice that there is only one VF
for LF_1 and LF_3. In our training, this VF is repeatedly sent
to the FF-net, ensuring that there are always two VFs used for
training.

The model trained is employed to enhance LFs. Regarding
the HFs and MFs, the single-frame method SVE is applied.
To train the SVE model, only HFs and MFs are taken and the
resulting dataset includes 3600 frames.

C. Training Settings

Our network is implemented on the Tensorflow platform,
using one NVIDIA GeForce GTX 1080Ti GPU for training.
During the training, minibatch gradient descent is used for
optimization. Frames are segmented into 64 x 64 patches as
samples and the batch size is set to 64. We adopt the adaptive
moment estimation (Adam) algorithm with an initial learning
rate set to 10~*. The learning rate is adjusted using the step
strategy with y = 0.5. Our validation set includes 50 frames,
which are completely excluded from the training database.

D. Test Datasets and Settings

Test Datasets: The 18 test sequences mostly selected by the
joint collaborative team on video coding (JCT-VC) for video
codec testing and quality assessment are employed for testing.
Each sequence is encoded by HM16.9 under the default RA
and LDP configurations. Then, the reconstructed frames of
each sequence are obtained for further enhancement.

i7-8700@3.20 GHz, 32-GB memory and NVIDIA TITAN V.
In the test, we evaluate the average performance of the
first 49 frames in each test sequence, including 36 LFs and
13 HFs/MFs. Only PSNR and BD-rate [54] of the lumi-
nance component is reported. Details of the code, model, and
experimental results can be found in our website [55].

Furthermore, to verify the generalizability of our proposed
approach, we employ another two test sets in the experiments
of Sections VI-E and VI-H. One dataset is Vimeo90K [56],
which is a large-scale video dataset designed for the temporal
frame interpolation, video denoising, video deblocking, and
video SR. There are 7824 sequences in the Vimeo90K test
dataset, and each contains seven consecutive frames with fixed
resolution 448 x 256. In this article, we randomly select 900
sequences for performance evaluation. The other dataset con-
tains nine sequences which are usually used for video quality
measurement [57]. The nine sequences are structured into four
groups according to their resolutions: 1) the 1920 1080 group
includes factory, life, and speed-bag; 2) the 1280 x 720 group
includes parkrun-ter, vidyol, and vidyo3; 3) the 352 x 288
group includes bridge-far and city-cif; and 4) the 352 x 240
group includes garden-sif.

VI. EXPERIMENTAL RESULTS

Table III describes the overall performance of our approach.
For a fair comparison, the SVE network is set with almost the
same number of parameters as that of the FF-net of PMVE, as
described in Table I. It can be seen that our approach signif-
icantly improves the objective quality of compressed frames,
which is equivalent to reducing averagely 9.00% BD-rate at
the encoder side, compared to the anchor HM16.9.

A. Comparison With Single-Frame Methods

Results: Table III presents the enhancement results of
PMVE compared with that of state-of-the-art single-frame
methods and our SVE. For a fair comparison, all compared
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TABLE IV

PSNR (DB) COMPARISON WITH STATE-OF-THE-ART METHODS (ONLY LFS)

Single-frame methods

Multi-frame methods
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QP | H.265HEVC ARCNN DnCNN VRCNN DSCNN DCAD SVE | OPT (0,4) PMVE

22 39.72 39.74 39.94 39.87 39.90 39.95 39.93 39.99 39.97

27 37.20 37.27 37.44 37.39 37.42 37.49 37.46 37.55 37.53

32 34.65 34.73 34.95 34.87 34.91 34.98 34.95 35.05 35.06

37 32.13 32.24 32.43 32.36 32.47 32.49 32.48 32.56 32.58
TABLE V

APSNR (DB) OF OUR MULTIFRAME METHOD PMVE AND
SINGLE-FRAME METHOD SVE

op  H265 SVE PMVE
HEVC  (APSNR) (APSNR)

22 4022 4041 (+0.19) 4044 (+0.22)
27 3754  37.80 (+0.26)  37.85 (+0.31)
32 3492 3522 (+0.30)  35.30 (+0.38)
37 3233 32.66 (+0.33)  32.75 (+0.42)
42 2958  29.90 (+0.32)  30.00 (+0.42)
47 27.09  27.38 (+0.29)  27.47 (+0.38)

models are trained with our training database. We can see from
Table III that our PMVE surpasses all single-frame methods
in the table. Specifically, we show the comparison on 36 LFs
in Table IV. It can be seen that PMVE achieves the highest
PSNR among all enhancement schemes.

Analysis: Relative to the temporal information, we find that
the spatial information contributes more in the enhancement,
particularly at small QP values. In Table V, we show the
results of APSNR between our multiframe and single-frame
methods, compared to the anchor H.265/HEVC. Our SVE
adopts almost the same structure and the same number of
parameters with the FF-net of PMVE. Hence, the difference
between SVE and PMVE is that SVE misses the temporal
information derived from the preprocessing stage. We can see
that the APSNR improvement comes mainly from SVE, for
example, when QP = 22, the gain is 0.19 dB for SVE while
0.22 dB for PMVE, denoting that the temporal domain approx-
imately contributes 0.03 dB. The reason is that the textures of
reconstructed frames are well preserved at small QP values
so that the artifacts can be easily removed through learning
from neighboring pixels. But as the QP value increases, more
artifacts are introduced by the encoding process and the con-
tribution of the temporal domain increases. For example, at
QP value 42, PMVE achieves an extra 0.10-dB PSNR gain
over SVE. But as the QP value increases to 47, the PSNR
gain is decreased. The reason is that the correlations in both
spatial and temporal domains are so seriously destroyed that
it is difficult to achieve further improvement.

B. Comparison With the Optical Flow-Based Method

We compare PMVE with the optical flow-based method,
called OPT, which is the most straightforward way for multi-
frame enhancement. In order to explore the best potential in
the temporal domain, we implement an accurate optical-flow
algorithm in our experiment, regardless of the computational
complexity.

Implementation of the OPT Method: We follow the frame-
work in Fig. 1(a) to implement the OPT method. The com-
pensated frames are generated from motion compensation and
sent to the FF-net together with the current LF. Regarding the
optical-flow algorithm, FlowNet 2.0 [37] is adopted, as it has
been proven in prior work that the accuracy of FlowNet 2.0 is
fully on par with state-of-the-art optical-flow methods. Details
of the OPT method can be found in our previous work [36].
As such, OPT intensively exploited the temporal correlations.
Afterward, the FF-net in PMVE is adopted for frame fusion.
Note that here the FF-net is trained for the OPT and our
PMVE schemes, respectively. In our experiments, different
neighboring frame pairs are utilized in OPT for an extensive
comparison.

1) The HF and MF neighboring to the current LF are
employed. As described in Fig. 3, {HF_0, MF_4} are
used to enhance LF_1, LF_2, and LF_3. This method is
called OPT (0, 4).

2) The nearest LFs to the current LF are used, for example,
in Fig. 3, {LF_1, LF_3} are employed to enhance LF_2.
We term this method as OPT (1, 3).

3) Both the nearest LFs and neighboring {HF, MF} are
utilized, which is called OPT (0, 4, 1, 3).

Results and Analysis: We conduct the experiments under
the RA configuration of H.265/HEVC. Table VII shows the
average PSNR of LFs at QP value 37. As can be seen
that OPT (0, 4) performs slightly better than OPT (1, 3),
whereas still 0.02 dB lower than PMVE. With respect to
OPT (0, 4, 1, 3), because there are four compensated frames
input to the subsequent frame fusion stage, the frame fusion
network is redesigned to possess the comparable number of
parameters to the FF-net. Unfortunately, OPT (0, 4, 1, 3)
performs the worst among all. Furthermore, we compare the
BD-rate reduction of PMVE and OPT (0, 4) in Table III.
We can see that OPT (0, 4) achieves averagely 9.08% BD-
rate reduction and our PMVE achieves 9.00%. In general,
the enhancement performance of PMVE is comparable to that
of OPT.

Although the OPT method is effective, it is computation-
ally expensive. Instead, our proposed approach achieves a
comparable enhancement performance with much lower time
complexity, as will be presented in Section VI-F.

C. Comparison With State-of-the-Art Work MFQE

We compare PMVE with state-of-the-art work MFQE-
1.0 [38] and MFQE-2.0 [39]. For frame quality identification,
the same algorithm is applied to PMVE and MFQE. To
enhance the identified LFs, we run the open-source code and
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models provided by MFQE-1.0 [58] and MFQE-2.0 [59] with-
out any modification except the file path. Because MFQE
provides only the LDP model at QP value 37, our test is
conducted at QP = 37 with default HM16.9 LDP configuration.

To exhibit the performance of both methods accurately, we
report only the PSNR of LFs. The results in Table VI show that
our PMVE attains an average increment of 0.61-dB PSNR over
H.265/HEVC. Compared against MFQE-1.0 and MFQE-2.0,
PMVE outperforms 0.40 and 0.09 dB, respectively.

From Table VI, we also observe that PMVE success-
fully enhances some sequences that MFQE-1.0 fails to deal
with. For example, in terms of sequences ‘“PartyScene” and
“BQSquare,” MFQE-1.0 performs worse than the anchor
H.265/HEVC but PMVE reaches as high as 0.49- and 0.88-
dB PSNR improvement, respectively. The major reasons are
summarized as follows.

1) One reason is that the motions in these sequences are
so complex that the MC-subnet of MFQE is unable
to accurately estimate such motions. In our proposed
method, we adopt two strategies to attain higher accu-
racy in the temporal domain. One is that we develop
the Pred-net to predict VFs for the current LF rather
than utilize the optical flow to compensate HFs to the
current LF. The other is that we introduce up to two
neighboring frame pairs to help the Pred-net collect
temporal information, whereas MFQE only employs a
pair of HFs. To verify our conjecture above, we exper-
iment on MFQE-1.0 by replacing the MC-subnet with
our Pred-net. The new MFQE, called “improved MFQE-
1.0” in Table VI, is retrained using our training database.
Results show that the improved MFQE-1.0 outperforms
the original one by 0.26-dB PSNR. Specifically, for
the above sequences “PartyScene” and “BQSquare,” it
surpasses H.265/HEVC by 0.46- and 0.90-dB PSNR,
respectively.

2) Another reason is that the frame fusion network of
PMVE, that is, the FF-net, is capable of extracting exten-
sive features. In Table VI, MFQE-1.0 is improved by
our Pred-net, indicating that the only difference between
PMVE and the improved MFQE-1.0 is due to their frame
fusion networks. We observe that PMVE still outper-
forms 0.14 dB, verifying the effectiveness of our FF-net
for frame fusion.

In summary, attributed to the effective biprediction strat-
egy and FF-net structure, PMVE shows advanced versatility
and superiority under different scenarios and consistently
outperforms H.265/HEVC for all sequences.

D. Comparison for Different Prediction Strategies

As described in Section IV-C, our proposed prediction strat-
egy involves up to two frame pairs to explore the temporal
information. To demonstrate the advantage of this strategy,
we compare it with the SVE method, the HF/MF method, and
the LF-only method. The latter two methods only input two
frames for frame fusion: one is the VF generated and the other
is the LF to be enhanced. To accommodate the two frames,
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TABLE VI
PSNR (DB) PERFORMANCE OF PMVE COMPARED WITH MFQE

H.265/  MFQE-1.0 MFQE-2.0  Improved

Class Sequence HEVC [38] [39] MFQE-1.0 PMVE
A PeopleOnStreet 30.85 31.71 31.86 31.87 31.99
Traffic 33.06 33.52 33.70 33.65 33.72
BasketballDrive 33.94 34.09 34.29 34.42 34.45
BQTerrace 30.79 30.82 31.24 31.24 31.38

B Cactus 31.83 3223 32.40 3239 3249
Kimono 33.94 34.50 34.56 34.75 34.83

ParkScene 31.58 32.02 32.14 32.15 32.19
BasketballDrill 31.57 31.79 32.15 32.06 32.20

c BQMall 30.23 30.39 30.87 30.75 30.94
PartykScene 27.10 26.95 27.56 27.41 27.59
RaceHorses 28.63 28.78 28.99 29.01 29.07
BasketballPass 31.07 31.56 32.00 31.76 31.95

D BlowingBubbles | 28.61 28.97 29.27 29.13 29.23
BQSquare 28.09 27.60 28.55 28.50 28.97
RaceHorses 28.33 28.80 29.02 29.00 29.09
FourPeople 34.80 35.35 35.55 35.46 35.64

E Johnny 36.44 36.84 37.09 36.99 37.12
KristenAndSara 35.93 36.45 36.70 36.56 36.75
Average 31.49 31.80 32.11 32.06 32.20

a frame fusion network that is similar to SVE is trained. The
details of the three methods are as follows.

1) The SVE method employs the single-frame model to

enhance every single LF.

2) The HF/MF method uses a pair of HF and MF to

enhance the LFs.

3) The LF-only method utilizes the LFs nearest to the

current LF for enhancement.

Results: Tt is intuitive that the neighboring HFs will provide
more information for the current frame enhancement. Both our
previous work [36] and MFQE [38], [39] follow this inference
and we indeed receive some gains. To verify the conjecture, we
conduct a comprehensive comparison to show the gains from
different solutions. As presented in Table VII, surprisingly, in
our approach, the HF/MF method contributes equally to the
LF-only method at QP value 37, that is, they both achieve
0.38-dB PSNR gain over H.265/HEVC, which is opposed to
our initial idea that the HF/MF method would perform much
better. Furthermore, our proposed prediction strategy combines
both methods together and obtains 0.45-dB gain in total.

Analysis: The results denote that at QP value 37, the
LF-only and the HF/MF schemes both provide benefit for
the enhancement procedure. More important, the temporal
information derived from these two schemes is somewhat
different. We therefore can obtain further improvement by
jointly utilizing them. For example, both the LF-only and
HF/MF methods gain 0.14-dB PSNR over SVE for sequence
“PeopleOnStreet.” If they provide the same information for
LF enhancement, the combination of them would still gain
0.14 dB because no extra information is introduced. However,
experimental results show that the combination leads to
0.27-dB PSNR over SVE, that is, there is an additional
0.13 dB increment over the two methods. It implies that the
LF-only and HF/MF schemes explore the correlation across
frames from different aspects and they both have effect on
the enhancement. Our proposed strategy jointly leverages the
two frame pairs, receiving more advantages from the temporal
domain.
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TABLE VII
PSNR (DB) PERFORMANCE OF DIFFERENT PREDICTION STRATEGIES

H.265/ OPT OPT

OPT HF/MF  LF-only

QR yeve SVE 04 (1,3 0.4,1,3) method method TMVE

37 3213 3248 3256 3248 3251 351 3251 3258

£ 2958 2990 - ; 2005 3000 3000

47 2709 2738 - ] 2746 2739 2747
TABLE VIII

PSNR (DB) PERFORMANCE OF PMVE COMPARED WITH MEMC-NET

Test dataset x264 ~ MEMC-Net [40] PMVE
JCT-VC 18 sequences | 33.19 33.78 34.07
Vimeo90K 34.80 35.69 36.02

9 new sequences* 33.15 33.66 34.02

“The 9 sequences are factory, life, speed-bag, parkrun-ter,
vidyol, vidyo3, bridge-far, city-cif, and garden-sif.

But as the QP value increases, the situation changes. At QP
value 42, we find that PMVE performs the same as the LF-
only method. While at QP value 47, the major contribution
to PMVE comes from the HF/MF frame pair, implying that
at large QP values, one pair of frames is sufficient for the
enhancement task.

E. Comparison With State-of-the-Art Work MEMC-Net

We evaluate the enhancement performance of PMVE, com-
pared to that of MEMC-Net [40]. Three test datasets are
employed for evaluation: the 18 sequences from JCT-VC, the
Vimeo90K testset [56] that is used in the experiments of
MEMC-Net, and the 9 new sequences.

Test Conditions: The open-source code and models of
MEMC-Net [60] are utilized for test. All test sequences are
encoded with the test conditions provided in MEMC-Net:
libx264 of FFmpeg in default Al configuration and QP value
37. Since MEMC-Net involves seven frames to enhance the
middle frame, we encode seven frames in each sequence and
only report the quality of the middle frame without loss of
generality.

Results and Analysis: From Table VIII, we can see that
PMVE averagely outperforms MEMC-Net by 0.33 dB in three
test sets. Although both approaches adopt the learning-based
framework, they are essentially different.

1) The fundamental flow between MEMC-Net and PMVE
is different. MEMC-Net utilizes the optical flow and
motion kernels to complete the warping from the current
frame to neighboring frames. Then, all warped frames
are sent to the frame fusion stage in conjunction with
the flow, the motion kernels, and the texture features. As
such, optical flow is still required and a large network
is leveraged for fusion. In contrast, PMVE utilizes only
the motion kernels to synthesize the VFs in relation to
the current LF and no explicit optical flow is involved.
Besides, only the VFs are used for fusion and the frame
fusion network is, hence, much smaller than that of
MEMC-Net.

The application scenarios of the two methods are
different. MEMC-Net aims to solve general video

2)

enhancement tasks, such as denoising and deblocking.
It is used for intracoded videos without considering the
artifacts introduced by intercompression. On the con-
trary, PMVE is designed to enhance the compressed
video quality in intercoding. PMVE considers the frame
quality fluctuation artifacts caused by intercoding and
proposes the prediction strategy to address such artifacts.
It also considers the high frame reference dependencies
in intercoding and proposes to take advantage of the VFs
for temporal information collection.

F. Comparison on Computational Complexity

The computational complexity of PMVE is evaluated, as
shown in Table IX. The average runtime is calculated from
sequences where 36 LFs are enhanced. Notice that the runtime
provided here excludes the file reading and writing time. We
find out that our GPU cannot run the sequences of resolution
2560 x 1600 with the models provided by MFQE and MEMC-
Net, because the required GPU memory exceeds the capability
of our GPU. Therefore, we divide each 2560 x 1600 frame
into four parts and process them one by one. The total time
is obtained by summing the processing time of four parts.

From Table IX, we can see that the OPT method costs
the longest time and leads to extremely high complexity. In
PMVE, because up to two frame pairs are processed by sepa-
rate Pred-nets, the total time is obtained by summing the time
cost of two Pred-nets. Nonetheless, the runtime of PMVE is
still much less than that of OPT and MFQE-1.0. Compared
with MFQE-2.0, although MEMC-Net and PMVE have more
parameters, their runtime increment is limited. MEMC-Net
runs quite fast except that it requires 4-22 s at the first frame
due to GPU model initialization. If more frames are tested, the
runtime of MEMC-Net will be further reduced. In general, our
PMVE shows great potential to achieve higher enhancement
performance over these methods with limited computational
complexity increment.

G. Visual Quality Comparison

We illustrate the visual quality of frames from PMVE
in Fig. 5. We observe that the frames compressed by
H.265/HEVC look artificial. The single-frame methods
improve the subjective quality but miss some details, as
illustrated in Fig. 5(a). Instead, our proposed PMVE suc-
cessfully recovers the details, and the enhanced frames look
clearer.

In addition, we compare the visual quality of PMVE with
that of multiframe methods, including MEMC-Net, MFQE-
1.0, and MFQE-2.0, as illustrated in Fig. 5(b) and (c). We
find that the frames enhanced by MEMC-Net and MFQE-1.0
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TABLE IX
TIME COMPLEXITY COMPARISON (S/FRAME)

Method Runtime per frame (seconds) #Parameters
2560 x 1600 1920 x 1080 1280 x 720 832 x 480 416 x 240 (million)
OPT 151.414 76.098 38.375 25.645 7.608 160
MFQE-1.0 [38] 2.403 1.158 0.549 0.266 0.097 1.79
MFQE-2.0 [39] 1.298 0.626 0.290 0.128 0.037 0.26
MEMC-Net[40] 0.420 0.652 0.390 0.190 0.128 72.0
PMVE 1.738 0.873 0.440 0.204 0.069 21.6

“ MEMC-Net is run on Pytorch and the other methods are run on Tensorflow.

TABLE X
PSNR (DB) PERFORMANCE OF DIFFERENT METHODS OVER ADDITIONAL TEST DATASETS

Single-frame methods Multi-frame methods
Test dataset H.265/HEVC | ARCNN DnCNN VRCNN DSCNN DCAD SVE MFQE-1.0 MFQE-2.0 PMVE
[10] [13] [17] [31] [30] [38] [39]
Vimeo90K 32.86 33.00 33.11 33.07 33.12 33.17  33.17 33.47 33.76 33.81
9 new sequences* 32.00 32.09 32.20 32.17 32.20 3224 3221 32.28 32.43 32.53

“ The 9 sequences are factory, life, speed-bag, parkrun-ter, vidyol, vidyo3, bridge-far, city-cif, and garden-sif.

H.265/HEVC ARCNN DnCNN VRCNN

DSCNN

DCAD

H.265/HEVC MEMC-Net PMVE

H.265/HEVC ARCNN DnCNN DSCNN
DCAD MFQE-1.0 MFQE-2.0 PMVE
(©

Fig. 5. Visual quality comparison. (a) Compare PMVE with the single-
frame methods. (b) Compare PMVE with MEMC-Net. (c) Compare PMVE
with MFQE-1.0 and MFQE-2.0.

look blurry, for example, the hand in sequence “BQmall” and
“BasketballPass.” This phenomenon is slightly improved in
MFQE-2.0. Our proposed PMVE successfully recovers certain

missed details and the enhanced frames look more visually
pleasing.

H. Generalizability of the PMVE Approach

Finally, we verify the generalization capability of our PMVE
over additional test datasets. Besides the aforementioned 18
sequences, the enhancement performance of PMVE is also
evaluated on Vimeo90K and 9 new sequences, as depicted in
Section V-D. The test sequences are all encoded by HM16.9
in LDP configuration at QP value 37. From Table X, we
can see that our PMVE surpasses all other methods in
PSNR performance, demonstrating the high generalizability
of PMVE over different sequences.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this article, we present a new approach, namely, PMVE,
to leverage the joint spatiotemporal correlation across frames
for the enhancement of compressed videos. For any LF to
be enhanced, we propose a biprediction-based scheme, where
VFs are first created from the respective neighboring frame
pairs through the Pred-net. Specifically, the tradeoff between
frame quality and frame distance is considered, and the
frame pairs are identified accordingly. Conventional pixelwise
motion estimation and compensation process are thus avoided
and a large complexity reduction is achieved. Afterward, the
VFs are fed into the FF-net for frame fusion, in conjunction
with the original LFs to finally reconstruct the enhanced ver-
sion. The experimental results confirm the effectiveness of our
PMVE, as it obtains a consistent superior result in PSNR and
visual quality over state-of-the-art work.

Currently, we mainly apply PMVE to the decoder in the
postprocessing stage. We are continuing to attempt the use of
PMVE at the encoder side. For example, high-quality reference
frames may be produced through PMVE and then involved
in motion estimation for further coding efficiency improve-
ment. Meanwhile, we will further investigate computational
complexity reduction to improve overall performance.
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