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A B S T R A C T

Influence maximization (IM) has shown wide applicability in immense fields over the past
decades. Previous researches on IM mainly focused on the dyadic relationship but lacked the
consideration of higher-order relationship between entities, which has been constantly revealed
in many real systems. An adaptive degree-based heuristic algorithm, i.e., Hyper Adaptive Degree
Pruning (HADP) which aims to iteratively select nodes with low influence overlap as seeds,
is proposed in this work to tackle the IM problem in hypergraphs. Furthermore, we extend
algorithms from ordinary networks as baselines. Results on 8 empirical hypergraphs show that
HADP surpasses the baselines in terms of both effectiveness and efficiency with a maximally
46.02% improvement. Moreover, we test the effectiveness of our algorithm on synthetic
hypergraphs generated by different degree heterogeneity. It shows that the improvement of
our algorithm effectiveness increases from 2.66% to 14.67% with the increase of degree
heterogeneity, which indicates that HADP shows high performance especially in hypergraphs
with high heterogeneity, which is ubiquitous in real-world systems.

. Introduction

As a classical optimization problem, IM aims to identify 𝐾 initial spreaders that maximize the influence spread under a certain
preading dynamics in a network. Due to its abundant applications, e.g., the control of disease (Cheng et al., 2020; Singh et al.,
021), the dissemination of information (Lei et al., 2015) and marketing management (Domingos & Richardson, 2001; Huang et al.,
019), the problem is widely studied in recent years. IM problem was first proposed to find the most helpful customers in viral
arketing. Later on, Kempe et al. (2003) provided an approximation algorithm with provable guarantee, namely greedy, to target

he influential seed nodes. In addition, the CELF method and its improved variant CELF++ were designed respectively (Leskovec
t al., 2007). Moreover, there are many other methods designed to enhance the algorithm performance of IM (Gong et al., 2021; Li
t al., 2021), including MIA (Chen et al., 2010), PMIA (Wang et al., 2012), etc.

Extensive researches of IM (Biswas et al., 2021; Wang et al., 2021) are oriented to ordinary networks, where edges were used
o denote pairwise interactions between individuals. In many real-world scenarios, an edge in ordinary networks with dyadic
elationship can hardly characterize the interactions if the interactions involve more than two entities. For example, multiple users
ay form groups for information sharing in social platforms, more than two researchers may contribute to one scientific paper, and
any people might be listed in mass emails. This kind of relations can be represented by a hypergraph (Cencetti et al., 2021; Young

t al., 2021) with hyperedges characterizing the polyadic interactions among more than two nodes (Ouvrard, 2020). In light of IM
n hypergraphs, it is still a mostly unexplored problem with only a few studies focusing on this field. For instance, Zhu et al. (2018)
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proved that IM in directed hypergraphs under IC model is an NP-hard problem, and they designed a sandwich framework with high
computational complexity. In addition, a set of greedy-based heuristic strategies were proposed to address the minimum target set
selection problem in hypergraphs (Antelmi et al., 2021). However, current researches either considered to transform hypergraphs
to bipartite graphs or designed greedy algorithms to deal with the IM in hypergraphs, ignoring the basic hypergraph topological
structures which may play a crucial role in tackling the IM. Even though the techniques above are applicable to some specific cases,
the IM problem in a hypergraph still embraces several major challenges. The first one is to achieve a balance between effectiveness
and efficiency. Algorithms that obtain optimal solution often takes a great deal of time, and thus the algorithms could hardly be
applicable to hypergraphs with large size. Therefore, it is necessary to design efficient methodologies that could approximate the
influence spread of the seed nodes to the optimal solution as much as possible. In addition, how to design a spreading dynamics
that could evaluate the spreading influence of nodes in a hypergraph is still less explored in the previous studies. Last but not least,
some network-based methods have already been proposed to tackle the IM problem in ordinary networks. However, how to extend
the algorithms from ordinary network to hypergraph with considering the high-order topology is also a challenging issue. The goal
of this work is to utilize the basic topological properties of a hypergraph to address IM problem in hypergraphs.

Degree centrality, as an essential topological property, was frequently used to characterize the node importance in a network
Lü et al., 2016; Stegehuis & Peron, 2021). In this study, we deal with the problem of how to choose the initial seeds for IM in
ypergraphs based on the node degree. First, we investigate the hypergraphs generated by the real-world data and show the high
nfluence overlap between nodes and their neighbors. Second, a discrete-time susceptible–infected (SI) model with Contact Process
s designed to quantify the influence spread of seed nodes. Then, we propose the Hyper Adaptive Degree Pruning (HADP) algorithm
or hypergraph IM, which iteratively avoids choosing nodes that have large influence overlap with the existing seeds as the seed
andidates. Experiments indicate that HADP algorithm surpasses other baselines efficiently and accurately on both empirical and
ynthetic hypergraphs. Our main contributions are summarized as follows:

• We explore the IM problem in hypergraphs, and an adaptive degree-based heuristic algorithm named Hyper Adaptive Degree
Pruning (HADP) is put forward to tackle the IM problem in hypergraphs under a discrete-time susceptible–infected (SI)
spreading dynamics.

• Experimental results show that our algorithm outperforms the algorithms extended from the network-based methods and the
state-of-the-art methods with both high effectiveness and efficiency.

• The performance of our method over the change of degree heterogeneity on synthetic hypergraphs is further explored. We
find that our algorithm achieves better effectiveness in hypergraphs with higher degree heterogeneity.

We organized the remainder of the study as follows. To start with, Section 2 introduces the current researches that are related
o our work. The preliminary definitions of a hypergraph and the problem statement are given in Section 3. Section 4 illustrates the
preading dynamics we used as well as the IM algorithms in hypergraphs. In Section 5, we provide detailed results and experimental
nalysis. We highlight the theoretical and practical implications and draw the conclusions in Sections 6 and 7.

. Related works

IM problem (Qiu et al., 2021; Wang et al., 2022) was mostly based on the ordinary networks previously. The solutions for IM
roblem can be generally classified into the following categories, i.e., approximation algorithm, heuristic solutions and community-
ased approaches. In the study proposed by Kempe et al. (2003), an algorithm that guarantees the approximation rate of (1− 1

𝑒 − 𝜖)
for selecting the seed nodes was presented, which was named as the greedy algorithm. However, the limitation of its filtering
conditions leads to a high time cost. Hereafter, algorithms have been proposed to optimize the approximate solution to balance the
effectiveness and efficiency. For example, CELF and CELF++ were proposed based on the rule of diminishing marginal gains (Goyal
et al., 2011). Although these algorithms get some improvements in efficiency, the time complexity is rather high when performed
on large-scale networks. Therefore, more efficient heuristic algorithms were proposed, such as the IRIE algorithm designed by Jung
et al. (2012). IRIE combines the estimation of the influence spread of seeds and the influence ranking process to verify the algorithm
effectiveness in the IC and its extension IC-N model. In addition, there are also some centrality-based heuristics that solve IM problem
by selecting top-ranked nodes as seeds, such as degree and PageRank centrality (Brin & Page, 1998). Community-based methods were
put forward to effectively diminish the influence overlap among seeds, such as C2IM (Singh et al., 2019), LKG (Samir et al., 2021)
and INCIM (Bozorgi et al., 2016). Additionally, plenty of new algorithms investigated the IM problem from different perspectives
have emerged in recent years, e.g., Li, Li et al. (2022) focused on the IM problem by considering the crowd emotion and Kumar
et al. (2021) studied it in social networks based on label propagation model.

Higher-order interactions between entities have been continuously found on a variety of real systems, but only a few studies
have focused on IM on higher-order networks. Amato et al. (2017) modeled the social media network via a hypergraph, in which
user-to-multimedia relationships are represented by hyperedges. In their work, TIM+ and IMM were further applied to tackle the IM
problem in a hypergraph after transforming it to a bipartite graph. A ranking-based algorithm was proposed under the HyperCascade
model (Ma & Rajkumar, 2022), where the model considers spreading process on the bipartite augment graph of a hypergraph. The
approach that is closely related to our study is proposed by Zhu et al. (2018). They modeled the social interactions through a directed
weighted hypergraph. Based on the IC model, a D-SSA method which inspired by the RIS sampling process (Borgs et al., 2014) was
2

designed to solve the general weighted social IM problem.
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Fig. 1. An illustration example of (a) a hypergraph; (b) the incidence matrix of (a); (c) the adjacency matrix of (a).

3. Preliminary definition

3.1. Definition of a hypergraph

A hypergraph is represented as 𝐻(𝑉 ,𝐸). 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑛} and 𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑚} stands for the node set and the hyperedge
set, respectively. An incidence matrix of 𝐻 is given by 𝐶[𝑛×𝑚] = 𝑐𝑖𝛼 , where

𝑐𝑖𝛼 =

{

1 if 𝑣𝑖 ∈ 𝑒𝛼
0 otherwise

(1)

Therefore, the adjacency matrix 𝐴[𝑛×𝑛] can be derived from 𝐶,

𝐴𝑖𝑗 = [𝐶𝐶𝑇 −𝐷]𝑖𝑗 , (2)

where 𝐷 is a diagonal matrix, 𝐷𝑖𝑖 represent the number of hyperedges node 𝑖 belongs to, and 𝐴𝑖𝑗 denotes the number of hyperedges
which contain both node 𝑣𝑖 and node 𝑣𝑗 . An example of a hypergraph is given in Fig. 1, which contains 5 nodes and 3 hyperedges.
The incidence matrix 𝐶 and adjacency matrix 𝐴 are also given correspondingly.

Given the incidence matrix of a hypergraph, the node degree and hyperdegree are further given as follows (Battiston et al.,
2020). The degree of a node 𝑣𝑖 (𝑑𝑒𝑔(𝑖)) indicates the number of neighboring nodes of 𝑣𝑖, which is formally defined as:

𝑑𝑒𝑔(𝑖) =
𝑛
∑

𝑗=1
�̃�𝑖𝑗 , (3)

where �̃� is the binarized adjacency matrix of 𝐴, whose element �̃�𝑖𝑗 = 1 if node 𝑣𝑖 and node 𝑣𝑗 share at least one hyperedge, and
�̃�𝑖𝑗 = 0 otherwise. In detail, it can be defined as follows:

�̃�𝑖𝑗 =

{

1 𝑖𝑓 𝐴𝑖𝑗 > 0

0 𝑖𝑓 𝐴𝑖𝑗 = 0
(4)

The hyperdegree of node 𝑣𝑖 is defined as the number of hyperedges to which node 𝑣𝑖 belongs:

𝑑𝐻 (𝑖) =
𝑚
∑

𝑗=1
𝐶𝑖𝑗 (5)

According to the above definitions, we can calculate the degree and hyperdegree of the nodes in Fig. 1. For instance, the degree
of node 𝑣3 is 𝑑𝑒𝑔(3) = 3 and the hyperdegree of node 𝑣3 is 𝑑𝐻 (3) = 2.

3.2. Problem statement

The study mainly addresses the problem of hypergraph influence maximization (HIM), which aims to identify 𝐾 influential
spreaders in a hypergraph under a specific spreading mechanism.
3
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Fig. 2. An schematic diagram of the SI spreading dynamics with Contact Process.

The mathematical statement of the HIM problem is described as:

argmax {𝜎(𝑆)} , 𝑆 ⊆ 𝑉

s.t. |𝑆| = 𝐾,
(6)

where the number of nodes 𝐾 in the seed set is the constraint condition of this problem, and 𝜎(𝑆) is the expected influence of the
seed node set 𝑆 (𝑆 ⊆ 𝑉 ).

IM problem in ordinary networks has been proved to be NP-hard in Kempe et al. (2003). The HIM problem, which can be
considered as the generalization of IM in ordinary networks, is also NP-hard (Zhu et al., 2018). That is to say, it cannot be solved
in polynomial time. As a result, we propose to use heuristic algorithms and greedy algorithms to approximate its optimal solution.

4. Algorithms

4.1. Susceptible–infected spreading model with Contact Process dynamics

To quantify the spreading influence of the seed nodes (Ferraz de Arruda et al., 2021; Zhan et al., 2020), we propose to use a
Susceptible–Infected (SI) model with Contact Process (CP) dynamics on a hypergraph (Suo et al., 2018). In the model, an individual
can only in either susceptible (S) or infected (I) state. An S-state node can be infected by each of its neighbors in I-state with an
infection rate 𝛽. The SI model in hypergraphs is described as follows:

• Step 1: Initially, nodes in the seed set are set to be infected, and the rest nodes are in susceptible.
• Step 2: At each time step 𝑡, we first find the I-state nodes. For each I-state node 𝑣𝑖, we find all the hyperedges 𝐸𝑖 =
{𝑒𝑖1, 𝑒𝑖2,… , 𝑒𝑖𝑞} that node 𝑣𝑖 belongs to. Then a hyperedge 𝑒 is chosen from 𝐸𝑖 uniformly at random. For each of the S-state
nodes in 𝑒, it will be infected by node 𝑣𝑖 with infection probability 𝛽.

• Step 3: We terminate the process until a specific time step 𝑇 reaches, where 𝑇 is a control parameter.

We show an illustrative instance of SI spreading process in hypergraphs in Fig. 2. At time step 𝑡 = 1, node 𝑣8 is in I-state. The
hyperedge set that contains 𝑣8 is 𝐸8 = {𝑒3, 𝑒4, 𝑒5}. At time step 𝑡 = 2, the S-state nodes, i.e., 𝑣3 and 𝑣4 in hyperedge 𝑒3, are infected
y node 𝑣8. Subsequently, the I-state nodes 𝑣3, 𝑣4 and 𝑣8 infect the S-state nodes in hyperedges 𝑒1, 𝑒2, 𝑒5.

.2. Adaptive degree-based heuristic algorithms

Given nodes 𝑣𝑖 and 𝑣𝑗 , we suppose that the influenced node sets at time step 𝑇 by setting node 𝑣𝑖 and 𝑣𝑗 as the seed node are given
y 𝐼𝑇 (𝑣𝑖) and 𝐼𝑇 (𝑣𝑗 ), respectively. Thus, the influence overlap 𝑜𝑇𝑖𝑗 at time step 𝑇 between 𝑣𝑖 and 𝑣𝑗 can be defined as 𝑜𝑇𝑖𝑗 =

𝐼𝑇 (𝑣𝑖)∩𝐼𝑇 (𝑣𝑗 )
𝑛 .

In Fig. 3, we show the comparison between the influence overlap distribution of a neighboring node pair as well as a randomly
selected node pair in various hypergraphs. A detailed description will be given in Section 5.1. In most datasets (i.e., Fig. 3(a), (b),
(e), (g) and (h)), the probability that a neighboring node pair have overlapped influence is always higher than that of a randomly
selected node pair. It suggests that when we choose one node as the seed, the probability that its neighboring nodes are choosing
as the seed should be diminished to avoid overlapped influence. Based on this assumption, we propose an adaptive degree-based
heuristic algorithm, i.e., Hyper Adaptive Degree Pruning (HADP), to solve the HIM problem.

Hyper Adaptive Degree Pruning (HADP). In HADP, we aim to punish nodes that have more neighbors in 𝑆 in each iteration.
The details are given in Algorithm 1. To conduct the HADP, we first give the original degree vector of all the nodes as 𝑑𝑒𝑔0 =
(𝑑𝑒𝑔0(1), 𝑑𝑒𝑔0(2),… , 𝑑𝑒𝑔0(𝑛)).
4
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Fig. 3. The influence overlap distribution of a randomly selected node pair (blue) and a neighboring node pair (pink) in dataset (a) Algebra; (b) Restaurant-Rev;
(c) Geometry; (d) Music-Rev; (e) NDC-classes; (f) Bars-Rev; (g) iAF1260b; (h) iJO1366. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

• Step 1: At the initial step, a node 𝑣𝑖 that has the largest degree is added to the seed set 𝑆, i.e., 𝑑𝑒𝑔0(𝑖) = max
{

𝑑𝑒𝑔0
}

. For
every neighboring node 𝑣𝑢 of 𝑣𝑖 (i.e., 𝑣𝑢 ∈ 𝑁(𝑖)), For every neighboring node 𝑣𝑢 of 𝑣𝑖, we first find the neighbors of 𝑣𝑢 in 𝑆
and collect all of them as a adaptive set 𝑁𝑆 (𝑢). Then the adaptive degree of node 𝑣𝑢 is updated as 𝑑𝑒𝑔1(𝑢) = 𝑑𝑒𝑔0(𝑢) − 𝑍, in
which 𝑍 = |𝑁𝑆 (𝑢)| denotes the size of elements in 𝑁𝑆 (𝑢). For the other nodes that are not the neighbors of 𝑣𝑖, e.g., node
𝑣𝑤, 𝑑𝑒𝑔1(𝑤) = 𝑑𝑒𝑔0(𝑤). After updating the adaptive degree of every node, we obtain an adaptive degree vector 𝑑𝑒𝑔1 =
(𝑑𝑒𝑔1(1), 𝑑𝑒𝑔1(2),… , 𝑑𝑒𝑔1(𝑛)). In consideration of the overlap between hyperedges, the degree penalty of each node varies
depending on the hyperedges that the node belongs to. Thus, we note that the elements in 𝑁𝑆 (𝑢) can be duplicated.

• Step 2: At step 𝑘, the node not in S that has the largest adaptive degree (denoted as 𝑣𝑗 (𝑣𝑗 ∈ 𝑉 ∖𝑆)), i.e., 𝑑𝑒𝑔𝑘−1(𝑗) =
max{𝑑𝑒𝑔𝑘−1}, is chosen, and we add it to the seed set 𝑆. For every neighboring node 𝑣𝑞 of 𝑣𝑗 , we first find the adaptive
neighbors of 𝑣𝑞 in 𝑆 and collect them as a set 𝑁𝑆 (𝑞). The adaptive degree of 𝑣𝑞 is further updated by 𝑑𝑒𝑔𝑘(𝑞) = 𝑑𝑒𝑔𝑘−1(𝑞) −𝑍,
where 𝑍 = |𝑁𝑆 (𝑞)|. For the other nodes that are not the neighbors of 𝑣𝑗 , e.g., node 𝑣𝑤, 𝑑𝑒𝑔𝑘(𝑤) = 𝑑𝑒𝑔𝑘−1(𝑤). We obtain a new
adaptive degree vector as 𝑑𝑒𝑔𝑘 = (𝑑𝑒𝑔𝑘(1), 𝑑𝑒𝑔𝑘(2),… , 𝑑𝑒𝑔𝑘(𝑛)) after updating the adaptive degree of every node.

• Step 3: The algorithm is terminated when we obtain 𝐾 seed nodes.

We propose a simplified algorithm which considers to give an even penalty for every node in the iterations, i.e., at step 𝑘, the
adaptive degree of 𝑣𝑞 is further updated as 𝑑𝑒𝑔𝑘(𝑞) = 𝑑𝑒𝑔𝑘−1(𝑞) −𝑍, where 𝑍 = 1. In this case, it should be noted that 𝑣𝑞 is a node
in set 𝑁𝑆 (𝑗) whose elements can be repeated. This simplified algorithm is named as Hyper Single Degree Pruning (HSDP), which
we will use as a baseline in the following sections.

Algorithm 1: Hyper Adaptive Degree Pruning (HADP)
Input : Size of seed nodes 𝐾

Hypergraph 𝐻(𝑉 ,𝐸)
Output: Seed node set 𝑆

1 Initialization: 𝑑𝑒𝑔0 ← Degree of each node.
2 while |𝑆| ≤ 𝐾 do
3 𝑘 ← |𝑆|
4 𝑣𝑗 (𝑣𝑗 ∈ 𝑉 ∖𝑆) ← 𝑚𝑎𝑥

{

𝑑𝑒𝑔𝑘(𝑗)
}

5 𝑆 ← 𝑆 ∪
{

𝑣𝑗
}

6 𝑁(𝑗) ← Neighbors of node 𝑣𝑗
7 for 𝑣𝑞 in 𝑁(𝑗) do
8 𝑁𝑆 (𝑞) ← Adaptive neighbor set of 𝑣𝑞 in 𝑆
9 Adaptive degree 𝑍 ← |𝑁𝑆 (𝑞)|
10 𝑑𝑒𝑔𝑘(𝑞) = 𝑑𝑒𝑔𝑘−1(𝑞) −𝑍
11 end
12 for 𝑣𝑤 not in 𝑁(𝑗) do
13 𝑑𝑒𝑔𝑘(𝑤) = 𝑑𝑒𝑔𝑘−1(𝑤)
14 end
15 end
5
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Table 1
Topological properties of the datasets. 𝑛 and 𝑚 represent the number of nodes and hyperedges in a hypergraph, respectively, ⟨𝑑𝑒𝑔⟩ is the average of node degree,
𝑑𝐻⟩

is the average of node hyperdegree,
⟨

𝑑𝐸⟩ represents the average of the size of the hyperedges, which is given by the number of nodes in the hyperedge. 𝑐,
𝑑⟩, 𝜉 and 𝜌 are the clustering coefficient, the average of shortest path length, diameter and edge density of the corresponding ordinary network of a hypergraph.
Hypergraphs 𝑛 𝑚 ⟨𝑑𝑒𝑔⟩

⟨

𝑑𝐻⟩ ⟨

𝑑𝐸⟩ 𝑐 ⟨𝑑⟩ 𝜉 𝜌

Algebra 423 1268 78.90 19.53 6.52 0.79 1.95 5 0.19
Restaurant-Rev 565 601 79.75 8.14 7.66 0.54 1.98 5 0.14
Geometry 580 1193 164.79 21.53 10.47 0.82 1.75 4 0.28
Music-Rev 1106 694 167.87 9.49 15.13 0.62 1.99 8 0.15
NDC-classes 1161 1088 10.71 5.55 5.92 0.61 3.50 9 0.01
Bars-Rev 1234 1194 174.30 9.61 9.93 0.58 2.10 6 0.14
iAF1260b 1668 2351 13.26 5.46 3.87 0.55 2.67 7 0.007
iJO1366 1805 2546 16.91 5.55 3.94 0.58 2.62 7 0.009

5. Experiments

By utilizing the eight hypergraphs generated by real-world data, extensive experiments are conducted to verify the algorithm
ffectiveness and efficiency. Besides, the robustness of our algorithm was tested in synthetic hypergraphs generated by different
egree heterogeneities as well. All the algorithms are written in Python and each of them runs on a Linux server with 2.20 GHz
ntel(R) Xeon(R) Silver 4114 CPU and 90G memory.

.1. Data description

We show the basic description and properties of eight hypergraphs generated by real-world datasets, which are collected from
ifferent domains.1,2 The hypergraphs will be utilized to validate the algorithm performance in the subsequent sections. The

topological properties of them are given in Table 1. The detailed description of each data is given as follows:
cat-edge-algebra-questions dataset (Algebra) & cat-edge-geometry-questions dataset (Geometry). The two datasets contain

nteractions between users on a mathematics website, i.e., MathOverflow. The interactions between users are mainly about
omments, questions and answers on algebra (or geometry) problems. Each node represents a user on MathOverflow. Users who
nswered the same type of question (in the area of algebra or geometry) is represented by a hyperedge.
cat-edge-madison-restaurant-reviews (Restaurant-Rev). The data indicates users who reviewed a specific type of restaurants

n Yelp within a month’s time. Each node and each hyperedge represent a user on this website and the set of users who reviewed
certain restaurant, respectively.
cat-edge-music-blues-reviews (Music-Rev). The data contains nodes and hyperedges which separately represent the users on

mazon and the reviewers sets who reviewed a particular category of blues music within a month time frame.
cat-edge-vegas-bars-reviews (Bars-Rev). Each node in the dataset denotes a user on Yelp, and a hyperedge is a set of users

ho reviewed a certain bar in Las Vegas, NV.
NDC-classes. The dataset contains nodes representing class labels, and a hyperedge is a drug which consists of a set of class

abels.
iAF1260b. The data contains nodes representing reaction-based metabolics, and hyperedges are sets of metabolics which are

pplied to a certain reaction. The duplicate hyperedges are removed.
iJO1366. Similar to iAF1260b, this is also a metabolic hypergraph with each node representing a reaction-based metabolic, and

yperedges are sets of metabolics which are applied to a certain reaction. The duplicate hyperedges are removed.

.2. Extended algorithms and baselines

To verify the performance of our algorithm, we propose two algorithms extended from ordinary network, i.e., H-RIS and H-CI,
nd choose four other up-to-date algorithms, i.e., Greedy, HyperIMRANK, HyperDegree and Degree, proposed by other researchers
s baselines. The details of each algorithm are given as follows.
Hyper Reverse Influence Sampling (H-RIS). Reverse Influence Sampling (RIS) algorithm was designed to tackle the IM problem

n an ordinary network (Borgs et al., 2014). In this work, we extend the RIS to hypergraphs by first introducing the following two
efinitions:

efinition 1 (Hyper Reverse Reachable Set). Given a hypergraph 𝐻(𝑉 ,𝐸), we remove each hyperedge with probability 1 − 𝛽 and
btain a sub-hypergraph 𝐻 ′(𝑉 ′, 𝐸′). Given a node 𝑣 ∈ 𝑉 , we define the hyper reverse reachable (HRR) node set as a collection that
an reach node 𝑣 in 𝐻 ′.

1 https://www.cs.cornell.edu/~arb/data/.
2 http://bigg.ucsd.edu/.
6
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Definition 2 (Random HRR Set). For a randomly selected node 𝑣 ∈ 𝐻 , a random HRR set is defined as a HRR set which is randomly
sampled from the pruned hypergraph 𝐻 ′.

We illustrate the H-RIS algorithm in Algorithm 2, which mainly contains the following two steps:

• Step 1: We generate 𝜂 random HRR sets, in which 𝜂 is a tunable parameter.
• Step 2: In each round of seed selection, we add node 𝑣𝑞 with the highest frequency in the generated HRR sets to the seed set
𝑆. Then, the HRR sets that contain node 𝑣𝑞 are removed. The selection rounds is terminated until seed set contains 𝐾 nodes.

Algorithm 2: Hyper Reverse Influence Sampling (H-RIS)
Input : Size of seed nodes 𝐾

Infection probability 𝛽
Hypergraph 𝐻(𝑉 ,𝐸)

Output: Seed node set 𝑆
1 Initialization: 𝑆 = ∅, 𝑈 = ∅. 𝑈 is a set of 𝐻𝑅𝑅.
2 𝐻 ′(𝑉 ′, 𝐸′) ← Remove hyperedges with probability 1 − 𝛽 from hypergraph 𝐻(𝑉 ,𝐸)
3 for 𝑖 = 1 to 𝜂 do
4 𝑣𝑖 ← Pick out a node at random
5 𝐻𝑅𝑅 ← Aquire nodes reachable to 𝑣𝑖 from 𝐻 ′(𝑉 ′, 𝐸′)
6 𝑈 ← 𝑈 ∪ {𝐻𝑅𝑅}
7 end
8 while |𝑆| ≤ 𝐾 do
9 𝑣𝑞 ← Node with the highest frequency in 𝑈
10 𝑆 ← 𝑆 ∪

{

𝑣𝑞
}

11 Delete the 𝐻𝑅𝑅 containing 𝑣𝑞 from 𝑈
12 end

The algorithm suggests that if a node appears more frequently in different HRR sets, it will have a higher probability to influence
he other nodes. Correspondingly, the more HRR sets that the seed set 𝑆 covers, the more likely that 𝑆 will have a large expected
nfluence. We set 𝜂 = 200 to conduct the experiments.
Hyper Collective Influence (H-CI). Collective Influence (CI) was first proposed to select seed nodes by utilizing the degree of

istant nodes in an ordinary network (Morone & Makse, 2015). We extend the algorithm to a hypergraph by substitute the degree
ith the hyperdegree and give the definition of hyper collective influence. A ball 𝐵𝑎𝑙𝑙(𝑣𝑖, 𝑙) is a node set whose elements contain

all nodes within a ball whose radius is 𝑙, where 𝑙 denotes the shortest path from a node in 𝐵𝑎𝑙𝑙(𝑣𝑖, 𝑙) to node 𝑣𝑖. The frontier of
𝑎𝑙𝑙(𝑣𝑖, 𝑙) is denoted as 𝜕𝐵𝑎𝑙𝑙(𝑣𝑖, 𝑙), i.e., the path length of any node inside 𝜕𝐵𝑎𝑙𝑙(𝑣𝑖, 𝑙) to node 𝑣𝑖 equals to 𝑙. We define the HCI of
ode 𝑣𝑖, which is read as:

𝐻𝐶𝐼𝑙(𝑖) = (𝑑𝐻 (𝑖) − 1)
∑

𝑣𝑗∈𝜕𝐵𝑎𝑙𝑙(𝑣𝑖 ,𝑙)
(𝑑𝐻 (𝑗) − 1), (7)

here 𝑑𝐻 (𝑖) is the hyperdegree of node 𝑣𝑖.
Given a specific value of 𝑙, we compute the HCI of each node in the hypergraph and choose the top 𝐾 nodes whose HCI value

s the largest to be the seeds for HIM problem. In our work, the tunable parameter 𝑙 is set as 1 and 2, and we name the algorithms
s H-CI(𝑙 = 1) and H-CI(𝑙 = 2), respectively.
Greedy. Greedy algorithm gives a guaranteed approximation of influence spread by accurately approximating influence spread

ith high computational complexity. The algorithm can be extended to a hypergraph (Kempe et al., 2003), which is shown in
lgorithm 3. We denote 𝑆𝑘−1 as the seed nodes that are selected at round 𝑘 − 1, the expected influence spread by 𝑆𝑘−1 is given by
(𝑆𝑘−1). The marginal gain of influence spread at round 𝑘 is given by 𝜎(𝑆𝑘−1 ∪ {𝑣}) − 𝜎(𝑆𝑘−1). At the beginning of the algorithm, 𝑆
s set to be empty. At round 𝑘, we calculate the expected influence spread 𝜎(𝑆𝑘−1 ∪ {𝑣}) for each 𝑣, where 𝑣 ∈ 𝑉 ∖𝑆𝑘−1. Node
𝑘 with the largest marginal influence contribution (𝑣𝑘 = argmax𝑣∉𝑆𝑘−1

{

𝜎(𝑆𝑘−1 ∪ {𝑣}) − 𝜎(𝑆𝑘−1)
}

) is inserted into the seed set,
.e., 𝑆𝑘 = 𝑆𝑘−1 ∪

{

𝑣𝑘
}

. The algorithm is terminated until the seeds set contains 𝐾 nodes.

Hyper-IMRANK (H-IMRANK). As a generalized algorithm of IMRANK, H-IMRANK (Ma & Rajkumar, 2022) still aims at
mproving a node ranking by iteratively approximate the marginal influence of nodes and finally obtaining a convergent and self-
onsistent node sequence. The algorithm is performed under a HyperCascade spreading model with given influence probabilities,
.e., 𝑝1 and 𝑝2, in an augmented bipartite network of the original hypergraph. In each iteration, the marginal influence of nodes is
stimated by a generalized strategy named HyperRank Last to First Allocating, and then the ranking is reorganized in a decreasing
rder based on the estimated values. The iterations of influence estimation and node re-ranking process are repeated until the node
anking converges. We set 𝑝1 and 𝑝2 as 0.01 and conduct the experiments. The top 𝐾 nodes in the convergent ranking of the output
7
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Algorithm 3: Greedy
Input : Size of seed nodes 𝐾

Hypergraph 𝐻(𝑉 ,𝐸)
Output: Seed node set 𝑆

1 Initialization: 𝑆0 = ∅, 𝑘 = 1.
2 while |𝑆| ≤ 𝐾 do
3 𝑣𝑘 = argmax𝑣∉𝑆𝑘−1

{

𝜎(𝑆𝑘−1 ∪ {𝑣}) − 𝜎(𝑆𝑘−1)
}

4 𝑆𝑘 = 𝑆𝑘−1 ∪
{

𝑣𝑘
}

5 𝑘 = 𝑘 + 1
6 end

HyperDegree (H-Degree). We compute the hyperdegree of each node, i.e., 𝑑𝐻 , in a hypergraph and arrange them in descending
order. The seed nodes for IM problem consists of the top-ranked 𝐾 nodes with the node hyperdegree.

Degree. Similar to HyperDegree, we compute the degree of each node in a hypergraph and sort them in descending order. The
top-ranked 𝐾 nodes are collected to be the seeds set.

5.3. Experimental evaluation on real-world data

To validate the algorithm performance, we use the seed set obtained by each algorithm as the seed nodes for the SI spreading
model with contact process running on various hypergraphs. In the SI spreading model, we show the results of different combinations
of infection probability 𝛽 and the termination step. The value of 𝜎(𝑆) is given by the average of the outbreak sizes over 500
realizations for each algorithm. In addition, the seed set size varies from 1 to 25 in our experiments.

The influence spread of the seed set selected by different algorithms when 𝛽 = 0.01, 𝑇 = 25 are given in Fig. 4 and Table 2.
In Fig. 4, we depict the expected influence spread as a function of the seed set size 𝐾, and the normalized area under each
of the influence spread curve (AUC) is further given in Table 2. The best performance is obtained by Greedy algorithm, which
comprehensively considers the topological and dynamical information. The algorithms (i.e., HADP and HSDP) we proposed perform
the second best in almost all the hypergraphs, except for hypergraph Bars-Rev with AUC slightly lower than H-RIS (i.e., 0.0008 lower
than H-RIS). In particular, we find that HADP has maximally 46.02% improvement in effectiveness compared to other benchmarks
from Table 2. As it is illustrated in Section 4.2, the basic assumption for HADP and HSDP is that when we choose one node as
the seed, the probability that its neighboring nodes are choosing as the seed should be diminished to avoid overlapped influence.
HADP, HSDP and Degree are algorithms based on the node degree, but HADP, HSDP perform much better than Degree algorithm
in all the hypergraphs. In hypergraphs such as Algebra, Restaurant-Rev, NDC-classes, iAF1260b and iJO1366, the probability
that a neighboring node pair have overlapped influence is higher than that of a randomly selected node pair (Fig. 3). Accordingly,
the AUC values in these hypergraphs derived from HADP, HSDP are also relatively larger than other algorithms except Greedy,
which is shown in Table 2. It suggests that the assumption of reducing influence overlap can help to refine the performance of HIM
algorithms. The fact that HADP is superior to HSDP in finding seed nodes further implies that considering an uneven penalty for
each node in the design of the algorithm is more reasonable for HIM. H-CI(𝑙 = 1), H-CI(𝑙 = 2) and H-Degree are algorithms based
on the hyperdegrees of the nodes, and we find that H-CI(𝑙 = 1) and H-CI(𝑙 = 2) perform slightly better than H-Degree. It indicates
that considering the hyperdegree of distant nodes can help to improve the selection of seeding nodes. The AUC values of the other
combinations of 𝛽 and 𝑇 are given in Tables 3, 4, 5, respectively, which are consistent with those we obtained from 𝛽 = 0.01, 𝑇 = 25.
In particular, the fact that the maximal effectiveness improvement of HADP reaches 43.64%, 45.72%, 44.48% demonstrates HADP
is robust over different settings of spreading parameters in the spreading model.

We further show the time cost for singling out seed node set (𝛽 = 0.01, 𝑇 = 25, 𝐾 = 25) in Table 6, where the time cost is
the average over 10 realizations for each algorithm. Even though Greedy algorithm performs the best for influence spread, it has
the highest time cost, i.e., it takes hours or days for each realization. Besides, H-RIS and HCI(𝑙 = 2) also have high computational
complexity compared to the remaining algorithms. H-Degree and Degree take the least time cost but with low AUC. In contrast,
HADP and HSDP can achieve relatively high AUC with low time cost (within 50 s) in all the hypergraphs.

5.4. Experimental evaluation on synthetic hypergraphs

The HIM methods we proposed, i.e., HADP and HSDP, are adaptive degree-based heuristic methods. To check the robustness
of our method over the change of the degree heterogeneity (St-Onge et al., 2022), the performance of our methods on synthetic
hypergraphs is evaluated. As the random hypergraph generator (i.e., HyperCL) we choose can only generate synthetic hypergraphs
with given hyperdegree distribution (Lee et al., 2021), we first investigate the correlation between node degree and hyperdegree
in real-world datasets. Fig. 5 indicates that the node degree is positively correlated with the corresponding hyperdegree in the
hypergraphs generated by real data, with the Pearson Correlation Coefficient (PCC) higher than 0.5. It means that the hypergraph
generator can also generate hypergraphs with various degree heterogeneities. The details of HyperCL are given as follows:

Initially, we suppose the hyperdegree and the hyperedge size sequence of a hypergraph 𝐻(𝑉 ,𝐸) are given as
{

𝑑𝐻 (1), 𝑑𝐻 (2),… ,
𝐻 } { 𝐸 𝐸 𝐸 }
8

𝑑 (𝑛) and 𝑑 (1), 𝑑 (2),… , 𝑑 (𝑚) , respectively. For each 𝑒𝑖 ∈ 𝐸, the nodes belong to 𝑒𝑖 are sampled independently. That is to
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Fig. 4. Expected influence spread under different seed set size 𝐾 for each algorithm in hypergraphs: (a) Algebra; (b) Restaurant-Rev; (c) Geometry; (d) Music-Rev;
(e) NDC-classes; (f) Bars-Rev; (g) iAF1260b; (h) iJO1366. The subplots show the rankings of influence spread of seed nodes filtered by different algorithms in
those data with small difference between algorithms when seed set size 𝐾 = 25. We set 𝛽 = 0.01, 𝑇 = 25.

Table 2
AUC scores obtained by each of the curves shown in Fig. 4 for algorithms, i.e., HADP, HSDP, H-RIS, H-CI (𝑙 = 1), H-CI (𝑙 = 2), H-Degree and Degree. The best
performance, i.e., the largest AUC score, is shown by ∗∗ and the second best is shown by ∗ in each hypergraph. We set 𝛽 = 0.01, 𝑇 = 25.

Hypergraphs Algorithms (AUC)

HADP HSDP H-RIS H-CI (𝑙 = 1) H-CI (𝑙 = 2) H-IMRANK H-Degree Degree

Algebra 0.1844∗∗ 0.1487∗ 0.1453 0.1030 0.0994 0.1087 0.1009 0.1098
Restaurant-Rev 0.1351∗∗ 0.1286∗ 0.1267 0.1207 0.1147 0.1277 0.1182 0.1283
Geometry 0.1316∗∗ 0.1287∗ 0.1304 0.1215 0.1215 0.1232 0.1214 0.1217
Music-Rev 0.1292∗∗ 0.1274∗ 0.1234 0.1248 0.1215 0.1234 0.1233 0.1270
NDC-classes 0.1399∗ 0.1476∗∗ 0.1256 0.1128 0.1145 0.1266 0.1143 0.1187
Bars-Rev 0.1261 0.1255∗ 0.1269∗∗ 0.1245 0.1239 0.1237 0.1241 0.1253
iAF1260b 0.2110∗∗ 0.1445∗ 0.0959 0.1019 0.1000 0.1395 0.1002 0.1070
iJO1366 0.1902∗∗ 0.1468 0.1139 0.0977 0.0909 0.1617∗ 0.0929 0.1058

Table 3
AUC scores obtained by our algorithms and baselines. The best performance, i.e., the largest AUC score, is shown by ∗∗ and the second best is shown by ∗ in
each hypergraph. We set 𝛽 = 0.005, 𝑇 = 35.

Hypergraphs Algorithms (AUC)

HADP HSDP H-RIS H-CI (𝑙 = 1) H-CI (𝑙 = 2) H-IMRANK H-Degree Degree

Algebra 0.2096∗∗ 0.1528∗ 0.1498 0.0958 0.0918 0.1026 0.0941 0.1038
Restaurant-Rev 0.1401∗∗ 0.1288 0.1333∗ 0.1185 0.1094 0.1277 0.1139 0.1283
Geometry 0.1384∗∗ 0.1323 0.1329∗ 0.1186 0.1186 0.1221 0.1180 0.1191
Music-Rev 0.1373∗ 0.1303 0.1380∗∗ 0.1194 0.1130 0.1165 0.1163 0.1292
NDC-classes 0.1346∗ 0.1456∗∗ 0.1144 0.1166 0.1180 0.1302 0.1182 0.1225
Bars-Rev 0.1285∗∗ 0.1284∗ 0.1098 0.1269 0.1255 0.1266 0.1261 0.1281
iAF1260b 0.1998∗∗ 0.1391∗ 0.1130 0.1031 0.1019 0.1335 0.1023 0.1072
iJO1366 0.2230∗∗ 0.1563 0.0761 0.0927 0.0880 0.1727∗ 0.0883 0.1028

say, each node 𝑣𝑗 selected into 𝑒𝑖 is added in probability proportion (i.e., 𝑑𝐻 (𝑗)
∑𝑛

𝑗=1 𝑑
𝐻 (𝑗) ) to its hyperdegree until the size of the hyperedge

𝑒𝑖 reaches 𝑑𝐸 (𝑒𝑖). Specifically, duplicated nodes are ignored in each hyperedge generation. The algorithm is terminated until the
size of each hyperedge reaches the pre-set size.

In the HyperCL, the hyperdegree sequence is generated by a hyperdegree distribution 𝑝(𝑑𝐻 ) ∼ (𝑑𝐻 )−𝛩, where the exponent
𝛩 is a tunable parameter. As the value of exponent 𝛩 increases, the hyperdegree distribution would change from heterogeneous
to homogeneous. In this work, the exponent value is set as 𝛩 = 2, 2.1, 2.3 and 2.5. The hyperedge size sequence generated by a
uniform distribution with the maximal size setting as 10, respectively. Coefficient of variation (CV), defined as the ratio of the
9
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Table 4
AUC scores obtained by our algorithms and baselines. The best performance, i.e., largest AUC score, is shown by ∗∗ and the second best is shown by ∗ in each
ypergraph. We set 𝛽 = 0.015, 𝑇 = 15.
Hypergraphs Algorithms (AUC)

HADP HSDP H-RIS H-CI (𝑙 = 1) H-CI (𝑙 = 2) H-IMRANK H-Degree Degree

Algebra 0.1993∗∗ 0.1532∗ 0.1337 0.1009 0.0971 0.1081 0.0987 0.1090
Restaurant-Rev 0.1364∗ 0.1276 0.1385∗∗ 0.1185 0.1106 0.1264 0.1149 0.1271
Geometry 0.1348∗∗ 0.1306 0.1312∗ 0.1200 0.1202 0.1226 0.1200 0.1207
Music-Rev 0.1320∗ 0.1279 0.1397∗∗ 0.1211 0.1156 0.1184 0.1184 0.1268
NDC-classes 0.1426∗ 0.1526∗∗ 0.0889 0.1186 0.1198 0.1331 0.1201 0.1244
Bars-Rev 0.1263∗∗ 0.1261∗ 0.1259 0.1245 0.1236 0.1240 0.1240 0.1256
iAF1260b 0.2078∗∗ 0.1426∗ 0.1030 0.1023 0.1002 0.1368 0.1006 0.1068
iJO1366 0.1946∗∗ 0.1425 0.1527 0.0882 0.0830 0.1584∗ 0.0837 0.0967

Table 5
AUC scores obtained by our algorithms and baselines. The best performance, i.e., largest AUC score, is shown by ∗∗ and the second best is shown by ∗ in each
ypergraph. We set 𝛽 = 0.02, 𝑇 = 10.
Hypergraphs Algorithms (AUC)

HADP HSDP H-RIS H-CI (𝑙 = 1) H-CI (𝑙 = 2) H-IMRANK H-Degree Degree

Algebra 0.2095∗∗ 0.1536∗ 0.1417 0.0975 0.0925 0.1040 0.0957 0.1053
Restaurant-Rev 0.1383∗ 0.1271 0.1449∗∗ 0.1168 0.1078 0.1254 0.1129 0.1266
Geometry 0.1405∗∗ 0.1340∗ 0.1329 0.1174 0.1176 0.1216 0.1173 0.1186
Music-Rev 0.1409∗∗ 0.1314 0.1387∗ 0.1181 0.1111 0.1155 0.1146 0.1296
NDC-classes 0.1365∗ 0.1467∗∗ 0.1093 0.1170 0.1183 0.1310 0.1186 0.1227
Bars-Rev 0.1268∗ 0.1270∗∗ 0.1221 0.1253 0.1232 0.1251 0.1239 0.1267
iAF1260b 0.2040∗∗ 0.1412∗ 0.1040 0.1035 0.1018 0.1359 0.1021 0.1076
iJO1366 0.2220∗∗ 0.1550 0.0831 0.0913 0.0867 0.1728∗ 0.0880 0.1011

Table 6
Time cost for each algorithm. The running time are given by the average over 10 realizations, the seed set size is set as 𝐾 = 25. The best performance, i.e.,
minimal time cost, is shown by ∗ and the running time of our proposed algorithm is shown in bold in each hypergraph. We set 𝛽 = 0.01, 𝑇 = 25.

Hypergraphs Time cost (s)

HADP HSDP H-RIS H-CI (𝑙 = 1) H-CI (𝑙 = 2) Greedy H-IMRANK H-Degree Degree

Algebra 19.2191 1.7816 101.4887 1.4566 489.7527 15 991.0652 17.9884 0.0290 0.0216∗

Restaurant-Rev 9.9571 1.5490 79.2794 1.1639 219.7846 23 630.6722 71.0967 0.0434 0.0311∗

Geometry 46.6095 2.6269 173.1826 2.6695 2369.7399 53 966.0565 44.9712 0.0293∗ 0.0294
Music-Rev 30.4322 3.4626 618.9846 3.6286 2164.4441 144 976.2404 316.2436 0.0623∗ 0.0653
NDC-classes 8.7360 2.9378 4317.1805 1.3690 5748.8244 18 891.5252 73.2828 0.0560∗ 0.0637
Bar-Rev 30.9617 3.6873 3472.9475 3.9713 12 715.2541 131 718.2580 574.7956 0.0780 0.0621∗

iAF1260b 14.8016 4.1104 3532.0354 1.9957 92 402.2618 15 396.0684 229.3660 0.1050 0.0885∗

iJO1366 19.3894 4.5724 9123.7571 2.2732 91 108.2699 30 233.7775 257.6366 0.0824∗ 0.0943

standard deviation to the mean (Tanaka, 2005; Zhang et al., 2019), is utilized to measure the degree heterogeneity of a hypergraph.
Specifically, both the standard deviation and the mean are obtained from the node degree sequence. Furthermore, we show the
correlation between the degree and hyperdegree of a node in the synthetic hypergraphs generated by HyperCL in Fig. 6, where the
PCC is higher than 0.9 in hypergraphs generated by different hyperdegree distribution.

We show the performance of our methods and the baselines on synthetic hypergraphs on IM problem in Fig. 7 and Table 7,
espectively. We observe that HADP surpasses all the other methods in all the hypergraphs and H-RIS performs the second best. In
ddition, as 𝛩 decreases, i.e., the degree distribution is more heterogeneous, HADP can gain more improvement in AUC than H-RIS
Table 7). It suggests that HADP tends to be more suitable for solving HIM with heterogeneous degree distribution, which is common
n real world. For a hypergraph with high degree heterogeneity, nodes with high degree tend to have more neighbors in the seed
ode set compared to low degree nodes. It implies that HADP could impose a large penalty on high degree nodes in hypergraphs with
igh degree heterogeneity. Thus, the adaptive degree distribution after several iterations could be significantly different from the
riginal one. However, in hypergraphs with low degree heterogeneity, the degree of nodes tends to be similar, which leads to small
ifference in penalties of the nodes’ degree. That is to say, the adaptive degree distribution after several iterations could be similar
o the original one. We have verified the above description by plotting the adaptive degree distributions of different iterations.
herefore, we suggest that the relatively homogeneous degree distribution may lead to HADP performs worse in hypergraphs with

ow degree heterogeneity for IM problem.
10
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Fig. 5. The correlation between node degree and hyperdegree in hypergraphs generated by real-world datasets: (a) Algebra; (b) Restaurant-Rev; (c) Geometry;
(d) Music-Rev; (e) NDC-classes; (f) Bars-Rev; (g) iAF1260b; (h) iJO1366. In each figure, we show the Pearson correlation coefficient (PCC) between node degree
and hyperdegree in each of the hypergraphs.

Fig. 6. The correlation between node degree and hyperdegree in synthetic hypergraphs generated by HyperCL via different exponents: (a) 𝐻(𝛩 = 2); (b)
𝐻(𝛩 = 2.1); (c) 𝐻(𝛩 = 2.3); (d) 𝐻(𝛩 = 2.5). In each figure, we show the Pearson correlation coefficient (PCC) between node degree and hyperdegree in each of
the hypergraph, where 𝑛 = 1000 and 𝑚 = 1000.

6. Discussions

6.1. Findings

From the perspective of hypergraph, this study design a spreading mechanism based on the higher-order interactions between
entities and solve the HIM under the spreading dynamics. We find that the proposed method, i.e., Hyper Adaptive Degree Pruning
(HADP), enables to effectively select seeds that can lead to large influence coverage, especially in hypergraphs with nodes having
high influence overlaps with its neighboring nodes. The experiments conducted on various synthetic hypergraphs reveal that HADP
performs better in terms of effectiveness and robustness in hypergraphs with high degree heterogeneity (Gao et al., 2022; Li, Ni
et al., 2022), which is prevalent in real-world systems.
11
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Fig. 7. Expected influence spread as a function of 𝐾 for each algorithm on synthetic hypergraphs generated by HyperCL: (a) 𝐻(𝛩 = 2); (b) 𝐻(𝛩 = 2.1); (c)
𝐻(𝛩 = 2.3); (d) 𝐻(𝛩 = 2.5). The inset in each figure depicts the degree distribution of each hypergraph, where 𝑛 = 1000 and 𝑚 = 1000.

6.2. Theoretical contributions

This study sheds light on the problem of multiple influential nodes identification in hypergraphs. Previously, only a few studies
have addressed this problem on higher-order networks.

In our work, a seed node screening strategy HADP considering node adaptive degree with higher-order interactions is proposed.
The algorithm fully considers the overlap of its affiliated hyperedges when performing degree pruning. When the two-hop neighbors
of a node are adjacent to those one-hop ones in more hyperedges, our method will have a greater degree reduction for each one-
hop neighbor of the candidate node, which is the major difference from previous studies. Additionally, the proposed algorithm
may inspire the studies of network dismantling (Wandelt et al., 2018) and influence minimization (Wang et al., 2017) problems in
higher-order networks.

In the design of HADP, we have analyzed some of the properties of a hypergraph in detail, which may help us deepen the
understanding of the nature and topology of higher-order networks. In particular, we observe a high influence overlap between
nodes and its neighbors in most of the hypergraphs when conducting the spreading process on them. Besides, a strong correlation
between node degree and hyperdegree in empirical hypergraphs is observed.

Based on the properties revealed, we measure the effectiveness of our algorithm on synthetic hypergraphs with different degree
heterogeneity. It is concluded that our algorithm performs better in networks with higher heterogeneity, which provides theoretical
support for the possible applicability of the algorithm to tackle the HIM problem in most of the real systems with high degree
heterogeneity.

6.3. Practical significance

Since entities in many real systems contain higher-order interactions like hyperedges rather than simple links, the approach in
this paper could be applied to marketing, epidemic prevention and social opinion management, etc. For example, with regard to
the operation and management of user comments on social platforms, relevant management departments should focus more on
the comments and dynamics of bloggers with high influence in order to quickly inhibit the spread of rumors and guarantee the
authenticity of online social opinions.

7. Conclusions

Much effort has been devoted to find influential node set in ordinary networks. In this work, we tackle the challenge on IM
problem in hypergraphs, which aims to identify 𝐾 initial spreaders from a hypergraph that can maximize the expected outbreak size
of a certain spreading dynamics. We start with a simple spreading model, i.e., susceptible–infected (SI) model with contact process
dynamics. Based on the fact that the influence overlap between nodes and their neighbors is usually high in hypergraphs generated
by real data, we propose an algorithm called Hyper Adaptive Degree Pruning (HADP) to solve the HIM problem. The algorithm
12
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Table 7
AUC scores obtained by each of the curve presented in Fig. 7 for algorithms, i.e., HADP, HSDP, H-RIS, H-CI (𝑙 = 1), H-CI (𝑙 = 2), H-degree and Degree. The best
performance, i.e., the largest AUC score, is shown by ∗∗ and the second best is shown by ∗ in each hypergraph.

Hypergraphs Algorithms (AUC) CV Gain

HADP HSDP H-RIS H-CI (𝑙 = 1) H-CI (𝑙 = 2) H-IMRANK H-Degree Degree

𝐻(𝛩 = 2) 0.1540∗∗ 0.1343∗ 0.1317 0.1128 0.1130 0.1280 0.1127 0.1134 2.80 14.67%
𝐻(𝛩 = 2.1) 0.1467∗∗ 0.1227 0.1302 0.1173 0.1173 0.1306∗ 0.1173 0.1179 2.27 12.33%
𝐻(𝛩 = 2.3) 0.1380∗∗ 0.1220 0.1288∗ 0.1210 0.1207 0.1274 0.1206 0.1216 1.48 7.14%
𝐻(𝛩 = 2.5) 0.1349∗∗ 0.1220 0.1312 0.1202 0.1195 0.1314∗ 0.1202 0.1206 1.39 2.66%

iteratively gives large penalty to nodes that have more neighbors in the existing seed set and thus these nodes are less likely to be
chosen as seeds. To validate the algorithm effectiveness, we demonstrate a list of baseline algorithms, including the ones proposed
by previous researchers as well as algorithms extended from ordinary networks. We perform the experiments on eight hypergraphs
generated by real data from various domains. Results show that HADP is superior to the benchmarks in terms of accuracy (except
Greedy) almost in all the hypergraphs with different infection probability. In addition, our algorithm also shows good performance
in terms of efficiency. As HADP is based on the node degree, we further test the performance on synthetic hypergraphs generated
by HyperCL, which can generate hypergraphs with different hyperdegrees. The results demonstrate HADP gains more AUC scores
in hypergraphs with high degree heterogeneity.

Heuristic algorithms have been widely utilized to solve the IM on ordinary networks due to its low computational complexity.
n this work, we confine to use a simple heuristic from hypergraph, i.e., degree, to design algorithm for identifying seed node set,
hich shows high performance. We deem that more high-order properties from hypergraph could be used for IM. Moreover, our
lgorithm framework could also be promising in solve the IM problem for other dynamic processes, such as threshold model (Xu
t al., 2022), independent cascade model (Ma & Rajkumar, 2022) and other epidemic models (Jhun et al., 2019).
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