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We study synchronization phenomena in complex networks in terms of machine learning 
oscillators without conventional dynamical equations. Specifically, we adopt an effective machine 
learning technique known as reservoir computing for modeling dynamical systems of interest. By 
constructing a coupled configuration, we show that a collection of coupled reservoir oscillators are 
in identical synchrony over a wider window of coupling strengths. We find that the geometrical 
and dynamical properties of synchronous orbits are in excellent agreement with that of the 
learned dynamical system. Remarkably, through this synchronization scheme, we successfully 
recover an almost identical bifurcation behavior of an observed system via merely its chaotic 
dynamics. Our work provides an alternative framework for studying synchronization phenomena 
in nature when only observed data are available.

1. Introduction

Synchronization phenomena are ubiquitous in natural and man-made systems ranging from synchronous flashing of fireflies [1], 
rhythmic contraction of cardiac cells [2], to electric power grids [3]. It has been gradually recognized that a majority of these 
interesting phenomena can be collectively modeling and characterizing via synchronization in complex networks [4,5]. Extensive 
work has been done to study synchronization in various types of complex networks ranging from static networks [6,7] over 
time-varying networks [8] to multilayer networks [9]. These studies have revealed a great variety of intriguing collective behaviors, 
for example, chimeras [10], explosive synchronization [9], and cluster synchronization [11]. These findings have the potential 
application in social, physiological, and engineering systems, such as epileptic seizures in the brain [12] and bridge oscillations [13].

However, the previous studies of synchronization on complex networks have been limited to dynamical oscillators — that is the 
oscillator has an analytical equation, such as the Kuramoto model [5], Pulse-coupled models [14], and coupled maps [4]. While 
this restriction is extremely convenient for analytical tractability, it is often far from realistic. In fact, we frequently encounter 
synchronization phenomena in our life, for example, rhythmic contraction of cardiac cells [2] and applause in the theatre, whose 
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dynamical equations of the oscillators are unknown. While it is clear that studying synchronization on networks in terms of the 
oscillators without analytical equations will bring new insights to synchronization, a general framework has not yet been constructed.

Fortunately, the past few years have witnessed dramatic advances in the realm of artificial intelligence, from facial recognition 
[15] to playing go [16]. In particular, a celebrated machine learning technique known as reservoir computing approach has furnished 
us with an appealing way to model dynamical systems [17–19]. A growing number of studies have demonstrated that this technique 
delivers effective short-term prediction [18], and also resembles the long-term behavior of the dynamical system under consideration 
[20,21]. Here, we show that the reservoir systems can be used as the oscillators on networks rather than the conventional analytical 
equations, for example, the Kuramoto oscillator [5]. Specifically, we provide a coupled scheme for achieving synchronization of the 
reservoir oscillators in complex networks. We further show that correlation dimension and recurrence time of the synchronous orbit 
are identical with that of an original dynamical system. Interestingly, we find an intriguing bifurcation phenomenon in the coherent 
behaviors of the reservoir oscillators. Our work opens a new path to study synchronization in complex networks via the machine 
learning technique.

2. Model description

2.1. Synchronization of the reservoir oscillators

We begin by considering a network of 𝑁 -coupled reservoir oscillators for which each reservoir oscillator is a reservoir computer. 
The coupling dynamical state of each reservoir oscillator is given by:

s𝑖(𝑡) = 𝜌u𝑖(𝑡) +
1 − 𝜌

𝑘𝑖

𝑁∑
𝑗=1

𝑎𝑖𝑗u𝑗 (𝑡), (1)

where u𝑖(𝑡) is the dynamical state of the 𝑖th reservoir oscillator at time 𝑡, 𝜌 is the overall coupling strength lying in the range (0,1), 𝑎𝑖𝑗
is an element of the network’s adjacency matrix, and 𝑘𝑖 =

∑
𝑗 𝑎𝑖𝑗 is the degree of node 𝑖. The evolution of the 𝑖th reservoir oscillator 

is governed by:

r𝑖(𝑡+ 1) = (1 − 𝛼)r𝑖(𝑡) + 𝛼tanh
(

Ãr𝑖(𝑡) +W𝑖𝑛

(
𝑏𝑖𝑛
s𝑖(𝑡)

))
,

(2)

where r𝑖(𝑡 + 1) is the reservoir state of its associated reservoir computer. For a learned dynamical system of interest, Ã, W𝑖𝑛, 𝑏𝑖𝑛, 
𝑏𝑜𝑢𝑡, and 𝛼 are the reservoir parameters usually given in advance before training [22,23]. Specifically, Ã is the adjacency matrix 
of a sparse random network. The elements in matrix W𝑖𝑛 are drawn from a uniform distribution [-1,1], while the parameter 𝛼 is a 
“leakage” rate lying in the range [0, 1]. Normally, we set the bias 𝑏𝑖𝑛 = 1 for convenience. Consequently, the output dynamical state 
u𝑖(𝑡 + 1) of the 𝑖th reservoir oscillator is such that:

u𝑖(𝑡+ 1) = W𝑜𝑢𝑡

⎛⎜⎜⎝
𝑏𝑜𝑢𝑡
s𝑖(𝑡)

r𝑖(𝑡+ 1)

⎞⎟⎟⎠ , (3)

where the bias 𝑏𝑜𝑢𝑡 = 1. The output weighted matrix W𝑜𝑢𝑡 is the sole fitting parameter to be determined in the training phase. This 
parameter can be analytically calculated in terms of observed data [24]. After the successful train, we use the output dynamical state 
u𝑖(𝑡 +1) feedback to approximate the coupling dynamical input state s𝑖(𝑡 +1) and then the reservoir oscillator can run autonomously. 
Here, we are interested in what will happen among these coupled reservoir oscillators in the course of time evolution.

2.2. Synchronization of the reservoir oscillators upon learning the Hénon map

We first consider each reservoir oscillator modeling the Hénon map in the chaotic regime given by:

𝑥𝑛+1 = 1 + 𝑦𝑛 − 1.4𝑥2
𝑛
,

𝑦𝑛+1 = 0.3𝑥𝑛.
(4)

We generate the 4 ×105 observations from this map and use the first 2600 points with the input u= (𝑥, 𝑦) for training each reservoir 
oscillator with the reservoir parameter 𝛼 = 0.25. After the training stage, each reservoir oscillator has captured the underlying 
dynamics of the learned Hénon map. Then we address the coherence behavior of the reservoir oscillators in the Barabási-Albert (BA) 
network with size 𝑁 = 100 and the coupling strength 𝜌 = 0.7 [25]. According to Eqs. (1)-(3), these coupled reservoir oscillators can 
run autonomously whose initial values are randomly chosen. Interestingly, we find that although the initial states of the reservoir 
oscillators are different, they soon approach an identical profile as shown in Fig. 1(a). This is further supported by observing the 
standard square deviation which is defined as follows:

1
𝑁∑

2

75

𝜂 =
𝑁

𝑖=1
(u𝑖(𝑡) − ū(𝑡)) , (5)
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Fig. 1. (a) The 𝑥-variable of coupled reservoir oscillators as a function of time 𝑡. (b) The standard square deviation 𝜂 as a function of time 𝑡. Attractors in phase space 
for (c) the synchronous orbit and (d) the Hénon map.

where ū(𝑡) is the average value at time 𝑡. It is shown that the standard square deviation 𝜂 converges to zeros, see Fig. 1(b). These 
findings reveal that synchronization of the reservoir oscillators can be achieved via the coupling scheme. Meanwhile, we notice that 
the synchronous orbit seems to present an identical profile to that of the Hénon map. Finally, we reconstruct the attractor from this 
synchronous state. It exhibits an almost same pattern as that from the Hénon map as illustrated in Figs. 1(c) and (d). This finding 
implies that the synchronous state of the reservoir oscillators has the same trajectory in phase space as that of a learned chaotic 
system.

3. Simulation results

3.1. Correlation dimension and recurrence time of the synchronous orbit

To address this, we now observe a classic geometrical measure known as the correlation dimension, which quantifies the 
self-similarity characteristics of a chaotic attractor [26]. In particular, for the 𝑚 points {X𝑖}𝑚𝑖=1 in phase space, its correlation integral 
𝐶(𝑟) is defined as follows:

𝐶(𝑟) = 1
𝑚2

𝑚∑
𝑖,𝑗=1

𝐻(𝑟− |X𝑖 −X𝑗 |), (6)

where 𝐻(⋅) is the Heaviside function. The correlation integral 𝐶(𝑟) quantifies how many pairs of points have a Euclidean distance less 
than a given threshold value 𝑟. Naturally, for a self-similarity strange attractor, a power-law relationship holds such that 𝐶(𝑟) ∼ 𝑟𝑑 , 
where 𝑑 is the correlation dimension. When utilizing the Grassberger and Procaccia algorithm for calculating correlation dimension 
of the synchronous orbit, we find that a clear power-law behavior emerges, see Fig. 2(a). Interestingly, it is shown that its profile 
on a doubly logarithmic scale almost matches that of the Hénon map. This result points out that self-similarity is preserved in the 
synchronous orbit.

Going beyond the geometrical perspective, we further employ recurrence time statistics to extract temporal correlation hidden 
in the synchronous orbit [27]. Specifically, for a given radius 𝜖, we calculate the set Ω(𝜖) of recurrence points for which Ω(𝜖) =
76

{𝑋𝑡𝑖
∶∥𝑋𝑡𝑖

−𝑋0 ∥< 𝜖}. We then enumerate the recurrence times from Ω(𝜖) such that 𝑇 = {𝑇 (𝑖) ∶ 𝑇 (𝑖) = 𝑡𝑖+1 − 𝑡𝑖}. Interestingly, when 
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Fig. 2. Comparison of the Hénon map and the synchronous state of the reservoir oscillators with respect to (a) correlation dimension and (b) mean recurrence time.

observing the mean recurrence time ⟨𝑇 ⟩ of the synchronous orbit, a clear scaling law emerges such that ⟨𝑇 ⟩ ∼ 𝜖𝛾 , see Fig. 2(b). This 
scaling behavior is in good agreement with that of the Hénon map. These findings reveal that the synchronous orbit of the reservoir 
oscillators has identical geometrical and dynamical characteristics as that of a learned chaotic map of interest.

3.2. Bifurcation of the synchronous orbit

Furthermore, from Eq. (1), we notice that the “leakage” rate 𝛼 is a critical reservoir parameter which controls how much 
history information is used in the evolution process of the reservoir oscillators. We then observe the effect of this parameter on 
synchronization of the previous reservoir oscillators. Interestingly, we find that different values of 𝛼 admit distinct dynamics of 
the synchronous orbit. Specifically, when resetting 𝛼 = 0.2, the synchronous orbit displays clear periodic dynamics with period-2, 
see Fig. 3(a). While 𝛼=0.231 generates low-order periodic (period-4) orbit as shown in Fig. 3(b). After that, it will enter more 
complicated chaotic regimes. As shown in Fig. 3(c), the dynamical behavior of the synchronous state starts with a low-order periodic 
motion and then transitions to chaotic through a sequence of period-doubling bifurcations as 𝛼 varies in the range [0.19, 0.25]. This is 
further supported by observing the averaged standard square deviation ⟨𝜂⟩ =∑

𝑡 𝜂, which tends to zeros as illustrated in Fig. 3(d). This 
intriguing bifurcation phenomenon reveals that by varying the “leakage” rate 𝛼, we can achieve distinct dynamics of the synchronous 
state as expected. Our finding in turn suggests that we can recover the bifurcation diagram of a dynamical system of interest via 
synchronization of the reservoir oscillators.

3.3. Synchronization of the reservoir oscillators upon learning the Lorenz system

We further investigate this synchronization behavior in continuous chaotic systems. In particular, we consider each reservoir 
oscillator learning the Lorenz system in the chaotic regime given by:

𝑑𝑥∕𝑑𝑡= 10(𝑦− 𝑧),

𝑑𝑦∕𝑑𝑡= −𝑥𝑧+ 60𝑥− 𝑦,

𝑑𝑧∕𝑑𝑡= 𝑥𝑦− 8∕3𝑧.

(7)

By utilizing the fourth-order Runge–Kutta technique, we produce 1 × 104 data points with step size Δ𝑡=0.02. After discarding 
transient, we use the first 2600 points with the input u = (𝑥, 𝑦, 𝑧) for training each reservoir oscillator with the reservoir parameter 
𝛼 = 0.25 and then observe the collective behaviors of the reservoir oscillators on the previous BA network with size 𝑁 = 100 and 
the coupling strength 𝜌 = 0.6. Similarly, a collection of coupled reservoir oscillators are clearly in identical synchrony as shown in 
Fig. 4(a). Hence, synchronization of the reservoir oscillators is also achieved even learning a continuous chaotic system. Moreover, 
when studying correlation dimension and mean recurrence time of their synchronous orbit, we find that they present identical 
profiles as that of the Lorenz system, see Figs. 4(b) and (c). For example, a clear power-law behavior emerges between ⟨𝑇 ⟩ and 𝜖
such that ⟨𝑇 ⟩ ∼ 𝜖−1.97. This confirms that the synchronous orbit of the reservoir oscillators resembles the climate of the dynamical 
system. Furthermore, we show that this synchronization phenomenon is robust with the coupling strength 𝜌. When 𝜌 is larger than 
0.1, the averaged standard square deviation ⟨𝜂⟩ equals zeros as illustrated in Fig. 4(d). Our finding reveals that synchronization of 
the reservoir oscillators can be achieved in a wide window of the coupling strength.

3.4. Application to speech data

Finally, we test our method on human speech data. For simplicity, we consider the Chinese vowel /i/ recorded from the adult 
77

speaker, whose analog signals are digitized by a sampling rate of 44.1 kHz and 16-bit sample resolution [28]. We select 2 × 104



Information Sciences 630 (2023) 74–81T. Weng, X. Chen, Z. Ren et al.

Fig. 3. The collective behaviors of the reservoir oscillators with respect to different “leakage” rates: (a) 𝛼=0.2 and (b) 𝛼=0.231. (c) The diagram of the 𝑥-variable of 
the synchronous orbit as a function of the “leakage” rate 𝛼. (d) The averaged standard square deviation ⟨𝜂⟩ as a function of the “leakage” rate 𝛼.

data points (approximately 0.5 seconds) as one sample and adopt the Butterworth filter to process them. Note that the proposed 
method can be also shifted to more complicated speech signals. Following the same procedure we have done before, we use the first 
2600 points of the speech data for training each reservoir oscillator with the reservoir parameter 𝛼 = 0.2. After the training stage, 
each reservoir oscillator has captured the underlying dynamics of the learned speech data, as shown in Fig. 5(a). We then observe 
the collective behaviors of the reservoir oscillators on the previous BA network with size 𝑁 = 100 and the coupling strength 𝜌 = 0.9. 
Similarly, we find that the coupled reservoir oscillators quickly approach identical synchronous orbits and the corresponding standard 
square deviation converges to zeros, see Figs. 5(b) and (c). Moreover, we calculate the correlation dimension of their synchronous 
orbit, which is nearly consistent with that of the speech data, as illustrated in Fig. 5(d). These results reveal that by virtue of the 
reservoir computing technique, our approach can be applied to study a great deal of fascinating synchronization phenomena for 
which only observational data is available.

4. Conclusions

In summary, we study synchronization in complex networks coupled with a machine learning technique. In particular, we adopt 
a reservoir computing approach to modeling dynamical systems and in turn this serves as a reservoir oscillator rather than a 
great variety of oscillators represented by the dynamical equations. By doing this, we can study a broad range of synchronization 
phenomena in complex systems even their analytical equations of oscillators are unknown. We design a coupled configuration of 
the reservoir oscillators in networks and show that synchronization can occur over a wide range of coupling strengths. Moreover, 
we find that its synchronous orbit has contained a number of geometrical and dynamical features such as correlation dimension and 
mean recurrence time, which resemble to a learned system of interest. Remarkably, by virtue of our synchronization scheme, we can 
uncover bifurcation phenomenon of a dynamical system of interest via its chaotic data information. Our work opens a new framework 
for studying synchronization phenomena in natural and man-made systems for which analytical equations are abandoned. Note that 
for convenience, we only study synchronization of the reservoir oscillators on a BA network. Of course, this can be applied to a great 
variety of other network structures, such as fractal networks [29,30], time-varying networks [8], and multilayer networks [9].

The benefit of our paradigm is three-fold. For the first time, we realize synchronization of the reservoir oscillators in complex 
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networks. Our work reveals that the machine learning technique can be adopted to analyze synchronization phenomena. Second, 
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Fig. 4. (a) The 𝑥-variable of coupled reservoir oscillators as a function of time 𝑡. Comparison of the Lorenz system and the synchronous state of the reservoir oscillators 
in terms of (b) correlation dimension and (c) mean recurrence time. (d) The averaged standard square deviation ⟨𝜂⟩ as a function of the coupled strength 𝜌.

since the reservoir oscillator has a powerful power to model dynamical systems for which only observational data is only required, 
our approach can be used to study and analyze a broad range of synchronization phenomena in nature and man-made systems 
such as biological systems, neuroscience, circadian rhythms, data mining, social sciences, and economy. Third, when adopting this 
data-driven technique for achieving synchronization, we can obtain a number of intriguing findings. For example, we can recover 
the bifurcation phenomenon of a dynamical system via its chaotic data information.
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