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A B S T R A C T

Multi-view semi-supervised classification is inherently a challenging task in multi-view learning due to
the lack of label information. Existing methods generally suffer from insufficient data fusion, expensive
computation cost in the solution procedure and fail in tackling unseen samples directly, intensively limiting
their applicability and efficiency in real scenarios. To address these issues, we propose an adaptive collaborative
fusion method, seeking for an appropriate representation and fusion for multi-view data. The main advantage
of the proposed method is that it simultaneously fuses both multiple feature projections and similarity graphs
to learn a joint projection subspace as well as a unified similarity graph that fully preserve the correlation
and distinction among views. Meanwhile, our method can coalesce different views in an adaptive-weighting
manner, making the learned subspace more discriminative and facilitating label propagation on the fused
graph. Furthermore, an acceleration strategy has been designed to reduce the computational complexity,
thereby making the proposed method scalable to relatively large-scale data. Finally, an alternating optimization
has been adopted to solve the formulated objective function. Extensive experiments on synthetic and real-world
datasets are conducted to demonstrate the effectiveness and superiority of our proposed method.
. Introduction

As data sources increase continuously, data with diverse feature rep-
esentations become widely available in real-world applications. This
ind of data is called multi-view data, in which each view corresponds
o a feature representation that has an independent statistical prop-
rty [1–4]. As a new learning paradigm, multi-view learning aims to
ake full use of the information from different feature representations

o obtain a comprehensive representation and effective fusion for multi-
iew data, and has attracted considerable attention in recent years [5–
]. Depending on whether the labels of training data are involved or
ot, existing multi-view learning methods can be divided into three
roups: supervised, unsupervised and semi-supervised [9–13]. In real-
orld applications, labeled data are usually scarce due to the expensive

ost of manually labeling samples, whereas large amounts of unlabeled
ata are commonly available but have lower discriminative ability for
lass labels [14,15]. Therefore, numerous efforts have been made on
ulti-view semi-supervised learning, which jointly exploits unlabeled
ata and multiple views.

∗ Corresponding authors.
E-mail addresses: jiangbb@hznu.edu.cn (B. Jiang), xingyuwu@mail.ustc.edu.cn (X. Wu), w.sheng@ieee.org (W. Sheng).

The key challenge of multi-view semi-supervised learning is how
to effectively exploit the correlation and distinction between differ-
ent views to enhance performance under the circumstance of abun-
dant unlabeled data [16]. To tackle this problem, extensive research
that explores the comprehensive information of multiple views has
been carried out in recent years. A straightforward solution is to
concatenate multiple views into one view and then handle multi-view
data via single-view models. A popular approach in this direction
is graph-based semi-supervised learning. Typical methods include la-
bel propagation [17] and flexible manifold embedding [18], which
aim to propagate the label information from labeled data to unla-
beled data according to the similarity structure of data. Considering
that different views contain distinct features of data, such a feature
concatenation scheme could discard the differences among multiple
views, thus intensively degrading the effectiveness of models in multi-
view scenarios. To make full use of multi-view data, the co-training
regularization method [19], Laplacian regularization method [20] as
well as their variants [21,22] were proposed to explore the consensus
vailable online 8 March 2023
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and complementarity among multiple views. These methods, however,
are generally designed for binary classification, and are not directly
applicable to multi-view multi-class problems.

Inheriting from the single-view label propagation, many forms of
graph-based fusion models have been developed, which construct sim-
ilarity graphs on each view separately and explicitly use view weights
to incorporate them. For example, Karasuyama et al. propagated label
information on multiple single-view graphs and eliminated irrelevant
graphs by introducing a regularization term on the view weights [23].
Methods presented in [24,25] linearly integrated the processes of label
propagation on different views. Apart from an extra kernel parameter
involved in constructing graphs, these methods completely separate the
graph construction from label propagation, impairing the reliability of
graphs and finally limiting the effectiveness of label propagation across
views. To alleviate this issue, Nie et al. proposed to fuse a unified
similarity graph and perform the label propagation simultaneously [26–
28]. Despite the good efforts, these graph fusion methods are incapable
of directly predicting out-of-sample data directly, restricting their ap-
plication scenarios [13,29]. Recently, Li et al. further developed a
flexible multi-view semi-supervised model that can predict new-coming
samples by learning a concatenated feature projection [8]. Addition-
ally, benefiting from the linear regression model, the regression-based
multi-view methods have been designed, which learn feature pro-
jections for different views and linearly fuse them linearly [30,31].
Zhuge et al. employed a unified regression target to learn multiple
feature projections and discriminate the importance of various views
via view weights [31]. By fusing multiple feature projections, pre-
dictions for out-of-sample data can be made. To avoid constructing
similarity graphs, the regression-based methods do not consider the
local similarity structure of data, which is essential for multi-view
classification with scarce labeled samples.

Moreover, multi-view fusion methods proposed in [23–25,30,31]
introduced a weight-related exponential or regularization parameter to
control the distribution of view weights, so as to avoid the situation that
only the best view has a significant weight. This weight-related parame-
ter, however, is difficult to be tuned properly due to the lack of practical
interpretations. In summary, these multi-view methods learn either
similarity graphs or feature projections for each view separately, and
merely consider the graph-level or projection-level information fusion,
suffering from insufficient data fusion. Moreover, most graph-based
methods involve in expensive computation cost during the process of
training, degrading their applicability and efficiency for large-scale
problems. To solve the aforementioned issues, we present an adap-
tive Collaborative Fusion for Multi-view Semi-supervised Classification
(CFMSC). The main contributions of this paper are summarized as
follows:

• Different from existing methods, in CFMSC, multiple feature pro-
jections and similarity graphs are simultaneously integrated via
a collaborative fusion scheme, facilitating label propagation on
the fused graph and thus enhancing the discrimination of learned
projection subspace.

• Our method coalesces different views in an adaptive-weighting
manner and learns the joint projection as well as the unified
graph compatible across all views, thus avoiding the weight-
related parameter while taking into consideration the correlation
and distinction among multiple views.

• An acceleration strategy has been devised which can significantly
reduce the computational complexity of CFMSC from (𝑛3) to
(𝑛𝑚 log𝑚 + 𝑛(𝑚 + 𝑑)2) for efficiently handling large-scale data,
where 𝑛, 𝑚 and 𝑑 denote the numbers of samples, anchors and
features, respectively.

• An effective alternate optimization with fast convergence has
also been developed to solve the objective function of CFMSC,
and extensive experiments have validated the effectiveness and
38

efficiency of CFMSC.
Table 1
The notations used in this paper.

Notations Descriptions

𝑑𝑣 The feature dimension of the 𝑣th view
𝑉 The number of views
𝑑 =

∑𝑉
𝑣=1 𝑑𝑣 The total dimensionality of 𝑉 views

𝑐 The number of classes
𝑙 The number of labeled data
𝑿 = [𝐗1 ,… ,𝐗𝑉 ]𝑇 ∈ R𝑑×𝑛 The concatenated feature matrix of training data
𝑿𝑣 ∈ R𝑑𝑣×𝑛 The feature matrix of the 𝑣th view
𝒙𝑣
𝑖 ∈ R𝑑𝑣×1 The 𝑖th sample in 𝑿𝑣

𝒙𝑖 ∈ R𝑑×1 The 𝑖th sample
𝑾𝑣 ∈ R𝑑𝑣×𝑐 The feature projection matrix of the 𝑣th view
𝒀𝑙 ∈ R𝑙×𝑐 Given label matrix of labeled data
𝒀 = [𝒀𝑙 ; 𝟎]𝑇 ∈ R𝑛×𝑐 Initial label matrix of training data
𝑭 ∈ R𝑛×𝑐 The prediction label matrix of training data
𝑭𝑙 ∈ R𝑙×𝑐 Prediction label matrix of labeled data
f𝑖 ∈ R𝑐×1 The prediction label vector of 𝒙𝑖

2. Notations and related works

In this section, we first introduce several basic notations through-
out the paper, and then the previous methods closely related to our
research are revisited.

2.1. Definitions and notation

Throughout the paper, vectors and matrices are written in boldface
with lowercase and uppercase letters, respectively. ‖𝒗‖2 denotes the
𝐿2-norm of a vector 𝒗, ‖𝑴‖𝐹 denotes the Frobenius norm of a matrix
𝑴 . 𝟏 denotes a column vector of which elements are 1, and 𝑰𝑚 denotes
an 𝑚 × 𝑚 identify matrix. For simplicity, the notations frequently used
in this paper are listed in Table 1.

2.2. Graph-based semi-supervised learning

As a popular semi-supervised learning paradigm, graph-based label
propagation aims to propagate label information from labeled data to
unlabeled data according to the similarity structure of data, which can
be formulated as:

min
𝑭

Tr(𝑭 𝑇𝑳𝑭 ) + Tr
(

(𝑭 − 𝒀 )𝑇𝑼 𝑛(𝑭 − 𝒀 )
)

, (1)

here 𝑳 ∈ R𝑛×𝑛 denotes a graph Laplacian matrix, and 𝑼 𝑛 ∈ R𝑛×𝑛 is
predetermined diagonal matrix, whose 𝑖th diagonal element 𝑈𝑖𝑖 is a

ery large const (e.g., 106) if 𝒙𝑖 is a labeled sample and 1 otherwise. To
olve the out-of-sample data, Nie et al. [18] extended the label prop-
gation and proposed a flexible manifold embedding method (FME),
hose optimization objective is:

min
,𝑾 ,𝒃

Tr(𝑭 𝑇𝑳𝑭 )+Tr
(

(𝑭−𝒀 )𝑇𝑼 𝑛(𝑭−𝒀 )
)

+𝛾
(

‖𝑿𝑇𝑾+𝟏𝒃𝑇−𝑭‖

2
𝐹+𝜇‖𝑾 ‖

2
𝐹

)

,

(2)

here 𝛾 and 𝜇 are regularization parameters to control different terms.
ME explicitly uses the regression residue (i.e., 𝑿𝑇𝑾 + 𝟏𝒃𝑇 − 𝑭 ) to
ncode the mismatch between the projection subspace and prediction
abels.

.3. Multi-view semi-supervised learning

In the past decade, multi-view semi-supervised learning especially
raph-based models had attracted much attention. In this part, we will
riefly introduce the state-of-the-art works which are closely related to
ur method.

(1) Sparse Multiple Graph Integration (SMGI) [23] propagates label
nformation based on the linear combination of multiple single-view
raphs. To control the distribution of the view weights {𝛼 }𝑉 , SMGI
𝑣 𝑣=1
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explicitly introduces a parameter-involved regularization term, whose
optimization objective is:

min
𝑭 ,𝛼𝑣

𝑉
∑

𝑣=1

( 𝛼𝑣
‖𝑳𝑣

‖𝐹
Tr(𝑭 𝑇𝑳𝑣𝑭 ) +

𝛾
2
𝛼2𝑣

)

+ 𝜆‖𝑭 − 𝒀 ‖

2
𝐹 , s.t.

𝑉
∑

𝑣=1
𝛼𝑣 = 1, 𝛼𝑣 ≥ 0,

(3)

here 𝑳𝑣 ∈ R𝑛×𝑛 denotes the Laplacian matrix for the 𝑣th view, and 𝛾
s the weight-related regularization parameter.

(2) Multi-view Learning with Adaptive Neighbors (MLAN) [26] can
earn a unified graph 𝑺 ∈ R𝑛×𝑛 with adaptive neighbors, whose
bjective function is:

min
𝑭 ,𝑺,𝛼𝑣

𝑉
∑

𝑣=1

(

𝑛
∑

𝑖,𝑗=1
‖𝒙𝑣𝑖 − 𝒙𝑣𝑗‖

2
2𝑠𝑖𝑗

)

𝑝
2 + 𝛾‖𝑺‖2𝐹 + 𝜆Tr

(

𝑭 𝑇𝑳𝑆𝑭
)

s.t.
𝑛
∑

𝑗=1
𝑠𝑖𝑗 = 1, 𝑠𝑖𝑗 ≥ 0,𝑭 𝑙 = 𝒀 𝑙. (4)

nlike SMGI, MLAN can balance different views without explicitly
ntroducing extra parameters, in which 𝑝 can be tuned from (0, 1).

(3) Accelerated Manifold Embedding for Multi-view semi-supervised
lassification (AMEMC) [25] involves a weight-related exponential pa-
ameter 𝜃 to tune the distribution of {𝛼𝑣}𝑉𝑣=1. The objective of AMEMC
s:

in
𝑭 ,𝛼𝑣

𝑉
∑

𝑣=1
𝛼𝜃𝑣Tr

(

𝑭 𝑇 �̂�
𝑣
𝑭
)

+ 𝜆Tr
(

(𝑭 − 𝒀 )𝑇 (𝑭 − 𝒀 )
)

, s.t.
𝑉
∑

𝑣=1
𝛼𝑣 = 1, 𝛼𝑣 ≥ 0,

(5)

here �̂�
𝑣

∈ R𝑛×𝑛 denotes the normalized graph Laplacian for the
th view, and 𝜃 ≥ 1 needs to be tuned manually. The computational
omplexity of AMEMC can be reduced by using the convergence of the
atrix spectral radius.

(4) Flexible Multi-view SEmi-supervised Learning (FMSEL) [8] incorpo-
ates the multiple graph fusion into the framework of FME, formulated
s:

min
𝑭 ,𝑾 ,𝒃,𝛼𝑣 ,𝑺

‖

‖

‖

𝑺 −
𝑉
∑

𝑣=1
𝛼𝑣𝑮𝑣‖

‖

‖

2

𝐹

+ Tr
(

(𝑭 − 𝒀 )𝑇𝑼 (𝑭 − 𝒀 )
)

+ 𝜆Tr
(

𝑭 𝑇𝑳𝑆𝑭
)

+ 𝛾
(

‖𝑿𝑇𝑾 + 𝟏𝒃𝑇 − 𝑭‖

2
𝐹 + 𝜇‖𝑾 ‖

2
𝐹

)

s.t.
𝑛
∑

𝑗=1
𝑠𝑖𝑗 = 1, 𝑠𝑖𝑗 ≥ 0,

𝑉
∑

𝑣=1
𝛼𝑣 = 1, 𝛼𝑣 ≥ 0. (6)

MSEL performs the multi-view fusion from the aspect of graphs, and
t can handle out-of-sample data with the concatenated projection 𝑾
nd bias 𝒃.

(5) Multi-View semi-supervised classification via Adaptive Regression
MVAR) [30] focuses on the feature projection fusion and can predict
abels of new samples via learning feature projections for different
iews. MVAR distinguishes different views in the same style as [25],
hose objective function is:

min
𝑭 ,𝑾 𝑣 ,𝒃𝑣 ,𝛼𝑣

𝑉
∑

𝑣=1
𝛼𝜃𝑣

(

𝑛
∑

𝑖=1
𝑠𝑖
‖

‖

‖

𝑾 𝑇
𝑣 𝒙

𝑣
𝑖 + 𝒃𝑣 − 𝐟𝑖

‖

‖

‖2
+ 𝜆𝑣 ‖‖𝑾 𝑣

‖

‖

2
𝐹
)

s.t.
𝑉
∑

𝑣=1
𝛼𝑣 = 1, 𝛼𝑣 ≥ 0,𝑭 𝑙 = 𝒀 𝑙, (7)

here 𝜆𝑣 and 𝒃𝑣 are the regularization parameter and bias term of the
th view, respectively. In MVAR, 𝑠𝑖 is manually tuned to distinguish
ifferent samples.

. The proposed methodology

.1. Problem formulation

To explicitly deal with out-of-sample data, the least square re-
ression is widely adopted, which can be extended to the multi-view
39
scenario as follows:

min
𝑾 𝑣 ,𝑭

𝑉
∑

𝑣=1

‖

‖

‖

𝑿𝑇
𝑣𝑾 𝑣 − 𝑭‖

‖

‖

2

𝐹
+ 𝜆 ‖

‖

𝑾 𝑣
‖

‖

2
𝐹 . (8)

For simplicity, we can integrate 𝒃𝑣 into 𝑾 𝑣 by adding an 𝟏 vector
as an additional row of 𝑿𝑣. It can be noted that Eq. (8) neglects the
distinctions between different views and treats the regression loss on
each view equally, affecting its effectiveness when there exist low-
quality views. Considering that the features of multiple views have
diverse characteristics and contribute variously to model, the fusion
manner in [25,30] can be used to balance different views:

min
𝑾 𝑣 ,𝑭

𝑉
∑

𝑣=1
𝜋𝜃
𝑣
‖

‖

‖

𝑿𝑇
𝑣𝑾 𝑣 − 𝑭‖

‖

‖

2

𝐹
+ 𝜆 ‖

‖

𝑾 𝑣
‖

‖

2
𝐹 , (9)

where 𝝅 = [𝜋1,… , 𝜋𝑉 ]𝑇 denotes the weight vector, and 𝜃 controlling
the distribution of 𝜋𝑣 is a weight-related exponential parameter. It can
be observed that Eq. (9) has a trivial solution with respect to (w.r.t.)
𝝅 when 𝜃 = 1, that is 𝜋𝑣 = 1 for the best view and 𝜋𝑣 = 0 for
others. To avert this problem, existing multi-view fusion methods have
to manually tune 𝜃 from the range of (1,∞).

Through some simple algebraic transformations, an effective and
elegant fusion manner is tactfully derived, actively releasing Eq. (9)
from the exponential parameter 𝜃. Specifically, with fixed 𝑾 𝑣 and
𝝅, we explore the latent relation between the prediction label 𝑭 and
multiple projection subspaces {𝑿𝑇

𝑣𝑾 𝑣}𝑉𝑣=1 by setting the derivation of
Eq. (9) w.r.t. 𝑭 to zero:

𝑉
∑

𝑣=1
𝜋𝜃
𝑣
(

𝑭 −𝑿𝑇
𝑣𝑾 𝑣

)

= 𝟎 ⟹

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑭 =
𝑉
∑

𝑣=1
𝛼𝑣𝑿𝑇

𝑣𝑾 𝑣

𝛼𝑣 = 𝜋𝜃
𝑣∕

𝑉
∑

𝑣=1
𝜋𝜃
𝑣

. (10)

In Eq. (10), 𝛼𝑣 ≥ 0 actually works as a view weight and ∑𝑉
𝑣=1 𝛼𝑣 = 1.

Considering that the linear combination relation, i.e., 𝑭 =
∑𝑉

𝑣=1 𝛼𝑣𝑿
𝑇
𝑣

𝑾 𝑣 may be overstrict for data residing on non-linear distribution, we
relax the equality constraint on 𝑭 by introducing a flexible regression
residue (i.e., 𝑭 −

∑𝑉
𝑣=1 𝛼𝑣𝑿

𝑇
𝑣𝑾 𝑣). Thus, the multi-view fusion model in

Eq. (9) is transformed into:

min
𝑾 𝑣 ,𝛼𝑣≥0,𝟏𝑇 𝜶=1

‖

‖

‖

𝑭 −
𝑉
∑

𝑣=1
𝛼𝑣𝑿𝑇

𝑣𝑾 𝑣
‖

‖

‖

2

𝐹

+ 𝜆‖
‖

𝑾 𝑣
‖

‖

2
𝐹 , (11)

where 𝜶 = [𝛼1,… , 𝛼𝑉 ] ∈ R𝑉 is a weight vector. Different from tradi-
tional methods in the literature, Eq. (11) weights projection subspaces
straightforward and learns feature projections as well as view weights,
tactfully avoiding extra parameters (e.g., 𝜃). In this way, 𝛼𝑣 depends on
the mismatch between 𝑭 and 𝑿𝑇

𝑣𝐖𝑣 and can be adaptively optimized.
Therefore, Eq. (11) performs data fusion from the level of feature
projections in an adaptive-weighting manner.

Since each sample usually plays different roles in the training pro-
cess, the contribution of different samples on regression losses should
be taken into consideration [32]. Existing methods [30,33] associated
each sample with an additional weight and manually tuned the weights
for different samples, lacking a reasonable learning mechanism. To
alleviate this issue, we further design a new multi-view model that
discriminates different samples in the self-weighted manner without
explicitly introducing the sample weight parameter, formulated as:

min
𝑾 𝑣 ,𝛼𝑣≥0,𝟏𝑇 𝜶=1

1
𝑛

𝑛
∑

𝑖=1

‖

‖

‖

𝐟𝑖 −
𝑉
∑

𝑣=1
𝛼𝑣𝑾 𝑇

𝑣 𝒙
𝑣
𝑖
‖

‖

‖

2

+ 𝜆
𝑉
∑

𝑣=1

‖

‖

‖

𝑾 𝑣
‖

‖

‖

2

𝐹
. (12)

We can prove that Eq. (12) essentially accounts for the following
problem (the proof is given in Appendix A):

min
𝑇 𝑇

𝑛
∑ 1 ‖

‖

‖

𝐟𝑖 −
𝑉
∑

𝛼𝑣𝑾 𝑇
𝑣 𝒙

𝑣
𝑖
‖

‖

‖

2

+ 𝜆
𝑉
∑

‖

‖

‖

𝑾 𝑣
‖

‖

‖

2

𝐹
, (13)
𝑾 𝑣 ,𝛼𝑣≥0,𝟏 𝜶=1,𝑞𝑖≥0,𝟏 𝒒=𝑛 𝑖=1 𝑞𝑖 𝑣=1 2 𝑣=1
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where 1
𝑞𝑖

denotes the divisor weight of 𝒙𝑖, and the vector 𝒒 = [𝑞1,… , 𝑞𝑛].
It is worth noting that Eq. (13) will degenerate into Eq. (11) if each
sample is assigned with the same weight (i.e., 𝑞𝑖 = 1).

In multi-view semi-supervised scenarios, how to exploit the similar-
ty structures of different views is also critical since this structure can
nrich the label information of data by label propagation [22,34]. To
apture and fuse multiple similarity structure of data, the same fusion
anner as Eq. (11) can be adopted to integrate the similarity graphs
redefined on each view, fulfilled as:

in
𝑺

‖

‖

‖

𝑺 −
𝑉
∑

𝑣=1
𝛼𝑣𝑺𝑣‖

‖

‖

2

𝐹

, s.t. 𝑺𝟏 = 𝟏,𝑺 ≥ 0, (14)

where 𝑺 denotes a unified graph that compatibly crosses multiple
views, {𝛼𝑣}𝑉𝑣=1 discriminate multiple feature projections and similarity
graphs simultaneously, and the single-view graphs {𝑺𝑣}𝑉𝑣=1 can be
previously generated by [35].

Consequently, a novel multi-view semi-supervised classification
model via the adaptive collaborative fusion of feature projections and
similarity graphs is achieved by incorporating the above two parts into
label propagation, mathematically formulated as:

min
𝑭 ,𝑺,𝑾 𝑣 ,𝜶,𝒒

𝑛
∑

𝑖=1

1
𝑞𝑖
‖

‖

‖

𝐟𝑖 −
𝑉
∑

𝑣=1
𝛼𝑣𝑾 𝑇

𝑣 𝒙
𝑣
𝑖
‖

‖

‖

2

2

+ 𝜆
𝑉
∑

𝑣=1

‖

‖

𝑾 𝑣
‖

‖

2
𝐹 + 𝛽Tr(𝑭 𝑇𝑳𝑺𝑭 )

+ 𝛾‖‖
‖

𝑺 −
𝑉
∑

𝑣=1
𝛼𝑣𝑺𝑣‖

‖

‖

2

𝐹

+ Tr
(

(𝑭 − 𝒀 )𝑇𝑼 𝑛(𝑭 − 𝒀 )
)

s.t. 𝑺𝟏 = 𝟏,𝑺 ≥ 0, 𝜶 ≥ 0,𝜶𝑇 𝟏 = 1, 𝒒 ≥ 0, 𝒒𝑇 𝟏 = 𝑛, (15)

where 𝑳𝑺 ∈ R𝑛×𝑛 denotes the Laplacian matrix of 𝑺, and 𝑼 𝑛 ∈ R𝑛×𝑛

is a predetermined diagonal matrix. 𝑳𝑺 = 𝑫𝑺 − 𝑺, where 𝑫𝑺 is
the diagonal degree matrix with its the 𝑖th diagonal element being
∑𝑛

𝑗=1 𝑠𝑖𝑗 . 𝜆, 𝛾 and 𝛽 are the parameters to balance different terms. Dif-
ferent from existing methods that merely consider the fusion of feature
projections or similarity graphs, CFMSC can achieve a comprehensive
representation of multi-view data relying on the collaborative fusion on
both projections and graphs. Moreover, this fusion manner is effective
and parameter-free, balancing different views in an adaptive-weighting
manner. Besides, by integrating the projection learning in Eq. (13)
as well as the graph fusion and learning in Eq. (14) into a unified
framework, the label information can be accurately propagated on the
fused graph 𝑺 so that the learned feature projections will be more
discriminative for tackling new samples.

3.2. Alternate optimization

Noting that the objective function in (15) is difficult to be directly
solved since it is not jointly convex concerning all variables. To achieve
the optimal solution, the strategy that alternately optimizes each vari-
able by fixing other variables is adopted to solve (15). Specifically, four
relatively simple subproblems are separately solved to find the optimal
𝑾 𝑣, 𝑭 , 𝑺, 𝜶 and 𝒒.

Update 𝑾 𝑣 and 𝑭 : When other variables are fixed except 𝑾 𝑣 and
𝑭 , the view weight 𝛼𝑣 can be merged into 𝑾 𝑣 as 𝛼𝑣𝑾 𝑣 = 𝑾 𝑣, in which
𝑾 𝑣 denotes the weighted feature projection of the 𝑣th view. With fixed
{𝛼𝑣}𝑉𝑣=1, solving {𝑾 𝑣}𝑉𝑣=1 is equivalent to solving the joint weighted
feature projection 𝑾 = [𝑾 1,… ,𝑾 𝑉 ]𝑇 ∈ R𝑑×𝑐 . Accordingly, we should
solve the following subproblem:

min
𝑾 ,𝑭

Tr
(

(𝑿𝑇𝑾 − 𝑭 )𝑇𝑸(𝑿𝑇𝑾 − 𝑭 )
)

+ 𝜆Tr
(

𝑾
𝑇
𝑨−1𝑾

)

+ 𝛽Tr(𝑭 𝑇𝑳𝑺𝑭 ) + Tr
(

(𝑭 − 𝒀 )𝑇𝑼 𝑛(𝑭 − 𝒀 )
)

, (16)

where 𝑸 is a diagonal matrix with the 𝑖th diagonal element being 1
𝑞𝑖

,
and 𝑨 = diag(𝛼21 ,… , 𝛼21 , 𝛼

2
2 ,… , 𝛼22 ,… , 𝛼2𝑉 ,… , 𝛼2𝑉 ) with each 𝛼2𝑣 (𝑣 =

1, 2,… , 𝑉 ) repeating 𝑑𝑣 times. According to the proof in Appendix B,
̃
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the objective function in Eq. (16) is jointly convex w.r.t. 𝑾 and 𝑭 .
To obtain the optimal solution, we first take the derivative of Eq. (16)
w.r.t. 𝑾 and set it to zero:

𝑿𝑸𝑿𝑇𝑾 −𝑿𝑸𝑭 + 𝜆𝑨−1𝑾 = 0⟹𝑾 = 𝑩𝑭 , (17)

where 𝑩 = (𝑿𝑸𝑿𝑇 + 𝜆𝑨−1)−1𝑿𝑸 if 𝑑 < 𝑛 and 𝑩 = 𝑨𝑿(𝑿𝑇𝑨𝑿 +
𝜆𝑸−1)−1 otherwise according to the matrix identity.1 Based on the joint
weighted feature projection 𝑾 , the 𝑣th view feature projection 𝑾 𝑣 can
be decoupled as 1

𝛼𝑣
𝑾 𝑣. Substituting 𝑾 of Eq. (17) into Eq. (16), we

ave the following subproblem:

min
𝑭

Tr
(

(𝑿𝑇𝑩𝑭 − 𝑭 )𝑇𝑸(𝑿𝑇𝑩𝑭 − 𝑭 )
)

+ 𝜆Tr
(

𝑭 𝑇𝑩𝑇𝑨−1𝑩𝑭
)

+ 𝛽Tr(𝑭 𝑇𝑳𝑺𝑭 ) + Tr
(

(𝑭 − 𝒀 )𝑇𝑼 𝑛(𝑭 − 𝒀 )
)

. (18)

y setting the derivative of Eq. (18) w.r.t. 𝑭 to zero, 𝑭 is solved as
follows:

𝑭 = (𝑸 − 𝑩𝑇𝑿𝑸 + 𝛽𝑳𝑺 + 𝑼 𝑛)−1𝑼 𝑛𝒀 . (19)

With the optimal solution of 𝑭 , the class of unlabeled samples can be
determined by argmax1≤𝑗≤𝑐 𝐹𝑖𝑗 (∀𝑖 = 𝑙 + 1,… , 𝑛).

Update 𝑺: By fixing other variables, the optimization problem for
𝑺 is:

min
𝑺𝟏=𝟏,𝑺≥0

𝑛
∑

𝑖=1

‖

‖

‖

𝒔𝑖 −
𝑉
∑

𝑣=1
𝛼𝑣𝒔𝑣𝑖

‖

‖

‖

2

2

+
𝛽
2𝛾

𝑛
∑

𝑖,𝑗=1

‖

‖

‖

𝐟𝑖 − 𝐟𝑗
‖

‖

‖

2

2
𝑠𝑖𝑗 , (20)

here 𝒔𝑖 and 𝒔𝑣𝑖 are the 𝑖th rows of 𝑺 and 𝑺𝑣, respectively. Noting that
he optimization in Eq. (20) is independent for each row, thus we solve

by rows:

min
𝑖𝟏=1,𝑠𝑖𝑗≥0

‖

‖

‖

𝒔𝑖 +
1
2𝛾

𝒅𝑖
‖

‖

‖

2

2
, (21)

here 𝒅𝑖 is a row vector with 𝑑𝑖𝑗 =
𝛽
2 ‖𝐟𝑖 − 𝐟𝑗‖22 − 𝛾

∑𝑉
𝑣=1 𝛼𝑣𝑠

𝑣
𝑖𝑗 . Eq. (21)

can be efficiently solved with a closed-form solution [35].
Update 𝜶: By fixing other variables, we have the following problem:

min
≥0,𝜶𝑇 𝟏=1

‖

‖

‖

�̂� −
𝑉
∑

𝑣=1
𝛼𝑣𝑷 𝑣

‖

‖

‖

2

𝐹

+ 𝛾‖‖
‖

𝑺 −
𝑉
∑

𝑣=1
𝛼𝑣𝑺𝑣‖

‖

‖

2

𝐹

, (22)

here �̂� = 𝑸
1
2 𝑭 and 𝑷 𝑣 = 𝑸

1
2 𝑿𝑇

𝑣𝑾 𝑣. Converting �̂� , 𝑺, 𝑷 𝑣, and
𝑺𝑣 into the vector forms, i.e., 𝐯1=vec(�̂� ) ∈ R𝑛𝑐×1, 𝐯2 =vec(𝑺) ∈ R𝑛2×1,
ec(𝑷 𝑣) ∈ R𝑛𝑐×1, and vec(𝑺𝑣) ∈ R𝑛2×1, then the optimization problem for
can be transformed into:

min
≥0,𝜶𝑇 𝟏=1

𝜶𝑇𝑴𝜶 − 𝜶𝑇 𝒉, (23)

here 𝑴 = 𝑷 𝑇𝑷 + 𝛾𝑺𝑇
𝑏 𝑺𝑏, 𝒉 = 2(𝑷 𝑇 𝐯1 + 𝛾𝑺𝑇

𝑏 𝐯2), 𝑷=[vec(�̂� 1),
,vec(�̂� 𝑉 )] and 𝑺𝑏=[vec(𝑺1), ⋯,vec(𝑺𝑉 )]. Due to the semi-definite
, Eq. (23) is a quadratic convex programming problem and can be

irectly solved. The detailed derivation is given in Appendix C.
Update 𝒒: By fixing the other variables, the optimization for 𝒒 is:

min
𝑖≥0,𝒒𝑇 𝟏=𝑛

𝑛
∑

𝑖=1

𝑒2𝑖
𝑞𝑖

, (24)

where 𝑒𝑖 =
‖

‖

‖

𝐟𝑖 −
∑𝑉

𝑣=1 𝛼𝑣𝑾
𝑇
𝑣 𝒙

𝑣
𝑖
‖

‖

‖2
. With simple algebraic manipulations,

he optimal solution of 𝑞𝑖 can be derived as follows:

𝑖 =
𝑛𝑒𝑖

∑𝑛
𝑖=1 𝑒𝑖

. (25)

Thus, the value of 𝑞𝑖 can be automatically determined according to
the ratio of the regression loss on sample 𝒙𝑖 to the sum of regression
losses on all samples. Obviously, a smaller regression loss 𝑒𝑖 means a
smaller 𝑞𝑖, corresponding to a larger divisor weight 1

𝑞𝑖
. In other words,

the samples with larger regression losses will contribute less to the
objective function and have smaller divisor weights, thereby enabling
the proposed model to reduce the effect of potential noises.

1 (𝑷 −1 + 𝑩𝑇𝑹−1𝑩)−1𝑩𝑇𝑹−1 = 𝑷𝑩𝑇 (𝑩𝑷𝑩𝑇 +𝑹)−1.
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Algorithm 1 Optimization Algorithm for CFMSC
Input: Data 𝑿 = [𝑿1,⋯ ,𝑿𝑉 ]𝑇 , labels 𝒀𝐿 of labeled data, graphs {𝑺𝑣}𝑉𝑣=1,

and parameters 𝜆, 𝛽 and 𝛾.
1: Initialize 𝛼𝑣 = 1

𝑉 , and 𝑺 =
∑𝑉

𝑣=1 𝑺
𝑣∕𝑉 ;

2: repeat
3: Update 𝑾 by Eq. (17), and calculate each 𝑾𝑣 as 1

𝛼𝑣
𝑾𝑣;

4: Update 𝑭 by Eq. (19) or Eq. (34) for large-scale data;
5: Update each row of 𝑺 by solving Eq. (21);
6: Update 𝛼 by solving Eq. (23) ;
7: Update 𝑞𝑖 by Eq. (25) ;
8: until Convergence
Output: The prediction label 𝑭 , the feature projections {𝑾𝑣}𝑉𝑣=1, and

the view weight factor 𝛼.

With solving the subproblems of {𝑾 𝑣}𝑉𝑣=1, 𝑭 , 𝑺, 𝜶 and 𝒒 in Eq. (15)
eparately, we further summarize the whole optimization steps in
lgorithm 1. Here, we further analyze the computational complexity
f CFMSC. Firstly, calculating 𝑾 and 𝑭 involve the inverse operation

of matrices, taking 
(

𝑛𝑑 ∗ min(𝑛, 𝑑)
)

and (𝑛3) respectively in each
iteration. For the optimization of 𝜶, it usually takes poly(𝑉 ) to solve
Eq. (23), which is neglectable since 𝑉 is usually small in practice.
For 𝑺, it first needs to compute 𝒅𝑖, then updates the similarities by
Eq. (21), taking (𝑛2𝑑 + 𝑛2 log 𝑛). Besides, updating 𝒒 also requires
(𝑛𝑑𝑐). Due to 𝑐 ≪ 𝑛 and 𝑉 ≪ 𝑛, CFMSC approximately costs (𝑛3 +
𝑛2 log 𝑛 + 𝑛2𝑑 + 𝑛𝑑 ∗ min(𝑛, 𝑑)) in each iteration. Generally, CFMSC is
comparable to the state-of-the-art methods [8,26,27,30,31] in terms of
computational complexity. From Algorithm 1, we can see that 𝑾 relies
on 𝑭 due to 𝑾 = 𝑩𝑭 , which means that the similarity structures of
data can be delivered into the feature projection 𝑾 . Therefore, CFMSC
can directly make accurate predictions for out-of-sample data without
rebuilding similarity graphs and retraining models. Specifically, for a
newly coming sample �̂� ∈ R𝑑×1, let 𝒆 = [𝑒1,… , 𝑒𝑐 ]𝑇 = 𝑾

𝑇
�̂�, then its

prediction label 𝑦�̂� will be determined by 𝑦�̂� = argmax1≤𝑖≤𝑐 𝑒𝑖.

3.3. Accelerating CFMSC with the anchor-based bipartite graph

In CFMSC, computing the inverse of an 𝑛×𝑛 dense matrix and learn-
ing the similarity graph requires high computation and storage costs,
making it unbearable for large-scale data. Inspired by the anchor-based
bipartite graph learning [36,37], an accelerated strategy is further
designed to enhance the computation efficiency of CFMSC. Concretely,
we first use the 𝑘-means to generate 𝑚 (𝑚 ≪ 𝑛) clustering centers of
data as the anchor points, then construct the 𝑛 × 𝑚 bipartite graphs to
depict the similarity relations between training samples and anchors,
taking the computational complexity of (𝑛𝑚𝑑) and (𝑛𝑚 log𝑚+ 𝑛𝑚𝑑),
respectively. Let 𝑽 ∈ R𝑑×𝑚 denote the generated anchors that can be re-
garded as the unlabeled data, and 𝑮 ∈ R𝑚×𝑐 denotes the corresponding
prediction label of 𝑽 , which is an auxiliary variable. With the generated
𝑚 anchors, the 𝑛 × 𝑛 full graphs (i.e., {𝑺𝑣}𝑉𝑣=1 and 𝑺) turn into the
𝑛 × 𝑚 bipartite graphs, focusing on the similarities between 𝑿 and 𝑽 .
Accordingly, we can define the augmented graph of bipartite graph 𝑺
as follows:

�̂� =
[

𝟎 𝑺
𝑺𝑇 𝟎

]

∈ R(𝑛+𝑚)×(𝑛+𝑚). (26)

With augmented graph �̂�, the objective function of CFMSC is reformu-
lated as:

min
𝑾 ,𝑭 ,𝑺,𝜶,𝒒

Tr
(

(𝑿𝑇𝑾 − 𝑭 )𝑇𝑸(𝑿𝑇𝑾 − 𝑭 )
)

+ 𝜆Tr
(

𝑾
𝑇
𝑨−1𝑾

)

+ 𝛽Tr(𝑯𝑇𝑳�̂�𝑯) + 𝛾‖‖
‖

𝑺 −
𝑉
∑

𝑣=1
𝛼𝑣𝑺𝑣‖

‖

‖

2

𝐹

+ Tr
(

(𝑯 − �̂� )𝑇𝑼 (𝑯 − �̂� )
)

s.t. 𝑺𝟏 = 𝟏,𝑺 ≥ 0, 𝜶 ≥ 0,𝜶𝑇 𝟏 = 1, 𝒒 ≥ 0, 𝒒𝑇 𝟏 = 1, (27)
41
where 𝑯 =
[ 𝑭
𝑮
]

∈ R(𝑛+𝑚)×𝑐 , �̂� =
[ 𝒀
𝟎
]

∈ R(𝑛+𝑚)×𝑐 , 𝑼 =
[

𝑼𝑛 𝟎
𝟎 𝟎

]

∈
R(𝑛+𝑚)×(𝑛+𝑚) and 𝑳�̂� ∈ R(𝑛+𝑚)×(𝑛+𝑚). According to the definition of �̂�
in Eq. (26), we have:

𝑳�̂� =
[

𝑫𝑺 𝟎
𝟎 𝜦

]

−
[

𝟎 𝑺
𝑺𝑇 𝟎

]

=
[

𝑰𝑛 −𝑺
−𝑺𝑇 𝜦

]

, (28)

where 𝜦 ∈ R𝑚×𝑚 is a diagonal matrix whose diagonal elements are
column sums of the bipartite graph 𝑺. With Eq. (27), the optimization
for 𝑺 becomes:

min
𝑺𝟏=𝟏,𝑺≥0

𝑛
∑

𝑖=1

‖

‖

‖

𝑺 −
𝑉
∑

𝑣=1
𝛼𝑣𝑺𝑣‖

‖

‖

2

2

+
𝛽
𝛾

𝑛
∑

𝑖=1

𝑚
∑

𝑗=1
‖𝐟𝑖 − 𝐠𝑗‖22𝑠𝑖𝑗 , (29)

here 𝐠𝑗 denotes the 𝑗th row of 𝑮. In Eq. (29), constructing each
ipartite graph 𝑺𝑣 takes (𝑛𝑚 log𝑚 + 𝑛𝑚𝑑𝑣), and solving 𝑺 by rows
akes (𝑛𝑚), making the graph learning scalable well with the data size.
n Eq. (27), the optimization problems of 𝑾 , 𝜶 and 𝒒 are unchanged,
hich means that they can be directly solved via the corresponding

teps in Algorithm 1. As for 𝑭 , the optimization problem is transformed
nto:

minTr
(

(𝑿𝑇𝑩𝑭 − 𝑭 )𝑇𝑸(𝑿𝑇𝑩𝑭 − 𝑭 )
)

+ 𝜆Tr
(

𝑭 𝑇𝑩𝑇𝑨−1𝑩𝑭
)

+ 𝛽Tr

(

[

𝑭
𝑮

]𝑇 [

𝑰𝑛 −𝑺
−𝑺𝑇 𝜦

] [

𝑭
𝑮

]

)

+ Tr

(

[

𝑭 − 𝒀
𝑮

]𝑇 [

𝑼 𝑛 𝟎
𝟎 𝟎

] [

𝑭 − 𝒀
𝑮

]

)

.

(30)

Firstly, taking the derivative of Eq. (30) w.r.t. 𝑮 to zero, we obtain:

𝜦𝑮 − 𝑺𝑇𝑭 = 0⟹𝑮 = 𝜦−1𝑺𝑇𝑭 , (31)

Then, substituting 𝑮 = 𝜦−1𝑺𝑇𝑭 into Eq. (30) and setting its derivative
w.r.t. 𝑭 to zero, we can obtain the solution of 𝑭 :

𝑭 =
(

𝑸+𝛽𝑰𝑛+𝑼 𝑛−𝑸𝑿𝑇 (𝑿𝑸𝑿𝑇+𝜆𝑨−1)−1𝑿𝑸−𝛽𝑺𝜦−1𝑺𝑇
)−1

𝑼 𝑛𝒀 . (32)

Eq. (32) also involves the inverse operation of an 𝑛× 𝑛 matrix, limiting
its application for large-scale data. To make Eq. (32) adapt to large-
scale problems, the quadratic form in Eq. (32) can be reformulated as
follows:

𝑸𝑿𝑇 (𝑿𝑸𝑿𝑇 + 𝜆𝑨−1)−1𝑿𝑸 + 𝛽𝑺𝜦−1𝑺𝑇 = 𝑪𝑫𝑪𝑇 , (33)

where 𝑪 =
[

𝑸𝑿𝑇 𝑺
]

∈ R𝑛×(𝑚+𝑑) and 𝑫 =
[

(𝑿𝑸𝑿𝑇 +𝜆𝑨−1)−1

𝛽𝜦−1

]

∈
R(𝑚+𝑑)×(𝑚+𝑑). According to the Woodbury matrix identity,2 Eq. (32) can
be simplified as:

𝑭 = 𝑽 −1𝑼 𝑛𝒀 + 𝑽 −1𝑪
(

𝑫−1 − 𝑪𝑇 𝑽 −1𝑪
)−1

𝑪𝑇 𝑽 −1𝑼 𝑛𝒀 , (34)

where 𝑽 = 𝑸 + 𝛽𝑰𝑛 + 𝑼 𝑛. Eq. (34) substitutes the inverse operation
of an 𝑛 × 𝑛 dense matrix in Eq. (32) with the inverse of a diagonal
matrix, the inverse of an (𝑚 + 𝑑) × (𝑚 + 𝑑) matrix, as well as several
matrix multiplications. Specifically, the first term of Eq. (34) takes
(𝑛𝑐) since 𝑽 and 𝑼 𝑛 are both diagonal matrices, and the second term
is computed one by one from right to left, taking (𝑛𝑐(𝑚 + 𝑑) + 𝑛(𝑚 +
𝑑)2 + 𝑐(𝑚 + 𝑑)2 + (𝑚 + 𝑑)3). Due to 𝑚 + 𝑑 ≪ 𝑛 for large-scale data,
ur accelerated strategy can reduce the main computational complexity
rom (𝑛3 + 𝑛2 log 𝑛 + 𝑛2𝑑 + 𝑛𝑑2) to (𝑛𝑚 log𝑚 + 𝑛(𝑚 + 𝑑)2 + (𝑚 + 𝑑)3),
hich is approximately linear to the number of training samples 𝑛.

. Experiments

In this section, extensive experiments are conducted to verify the
ffectiveness and superiority of the proposed CFMSC. Specifically,
e first use synthetic data to visually demonstrate what capacities
ur multi-view fusion model exactly possesses. Secondly, we compare
FMSC with other state-of-the-art methods to further evaluate its

2 (𝑱 +𝑲𝑹𝑲𝑇 )−1 = 𝑱−1 − 𝑱−1𝑲(𝑹−1 +𝑲𝑇 𝑱−1𝑲)−1𝑲𝑇 𝑱−1
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Fig. 1. The data distributions of Three-Ring.
Fig. 2. The visualization results of the initialized graph matrices on Three-Ring data.
classification performance and efficiency on real multi-view datasets
with different data sizes. Finally, we analyze the parameter sensitivity
and convergence of CFMSC. All experiments are implemented in Matlab
R2016a and run on a Windows 10 computer with a 3.00 GHz Intel Core
i7-9700 CPU and 16 GB RAM.

4.1. Experiments on synthetic data

Since the features of different views have diverse data distributions,
the single-view graphs constructed from different views reflect multiple
structures of data. To verify the capability of CFMSC in learning the uni-
fied graph across multiple views as well as the discriminability against
noisy views, we followed [38] to randomly generate synthetic data
(i.e., Three-Ring), consisting of three views from three different classes.
The first two views have a relatively clear shape, shown in Figs. 1(a)
and 1(b), and the features of the third view are all noises, shown in
Fig. 1(c). Fig. 2 shows the visualization results of the initialized graph
matrices on three views.

From the results in Fig. 1, it can be seen that the data distributions
of the first two views and the third view vary obviously. Although the
graph matrices of views 1 and 2 shown in Fig. 2 can roughly reflect
the structure of the original data, there still exist several connections
between different classes. Furthermore, the graph matrix of view 3
seems to be randomly filled without any similarity structures, which
indicates that the noisy view makes the samples belonging to different
classes difficult to be separated. By using the proposed model, the
learned unified graph is shown in Fig. 3(a). From this figure, we observe
that there are much fewer inter-class connections, demonstrating that
the unified graph 𝑺 is more effective for label propagation and classi-
fication than the single-view graphs of Fig. 1. Accordingly, Fig. 3(b)
shows the weights assigned to three views after each iteration. We
finally conclude that CFMSC not only utilizes the similarity structures
across multiple views to learn a unified graph but also adaptively
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assigns appropriate weights to different views such that the noisy views
associated with small weights cannot degrade the performance.

4.2. Experiments on multi-view datasets

4.2.1. Datasets and experimental settings
Towards the evaluation of the proposed CFMSC, several real multi-

view datasets are used in this part, including MSRC-v1, Handwritten
(HW), Caltech101-7 (Cal-7), ORL, COIL20, Leaves, Hdigit, and MNIST.
Specifically, MSRC-v1 is an object recognition dataset and includes
7 different categories, with each category having 30 images. HW is
generated from the UCI machine learning repository and contains 2000
samples, in which each sample is represented by six different view
features. Cal-7 is the frequently used subset of the object recognition
dataset Caltech101, containing 1474 samples from 7 classes. ORL is
comprised of the face images of 40 different subjects with 10 images for
each subject. COIL20 consists of 1440 images with 72 samples per class,
in which each sample has four different views. The Leaves dataset is
comprised of the leaf images from 100 different plants with 16 images
for each plant. Hdigit and MNIST are two relatively large-scale datasets,
in which Hdigit is collected from two sources and consists of 10000
samples, and MNIST has 70 000 samples. The detailed information of
each dataset is summarized in Table 2.

We first compare CFMSC with a representative single-view method
(i.e., FME) [18] that treats different views equally to examine whether
the proposed multi-view collaborative fusion scheme can enhance
learning performance. Then, CFMSC is compared with seven state-of-
the-art multi-view methods, including multi-view adaptive regression
(MVAR) [30], joint consensus and diversity (JCD) [31], multi-view
learning with adaptive neighbors (MLAN) [26], flexible multi-view
semi-supervised learning (FMSEL) [8], sparse multiple graph inte-

gration (SMGI) [23], accelerated manifold embedding for multi-view
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Fig. 3. The graph matrix and the view weights learned by our multi-view fusion model.
Table 2
The detailed description of multi-view datasets.

View MSRC-v1 HW Cal-7 ORL COIL20 Leaves Hdigit MNIST

#1 1302 240 48 512 512 64 784 256
#2 48 76 40 59 420 64 256 144
#3 512 216 254 864 1239 64 – 59
#4 100 47 1984 254 630 – – –
#5 256 64 512 – – – – –
#6 200 6 928 – – – – –

Feature size 2418 649 3766 1689 2801 192 1040 459
Classes 7 10 7 40 20 100 10 10
Data size 210 2000 1474 400 1440 1600 10000 70000
semi-supervised classification (AMEMC) [25], and robust adaptive-
weighting multi-view classification (RAMC) [39]. RAMC is a supervised
method, which is employed to validate if using unlabeled data can
improve the effectiveness of multi-view semi-supervised classification.

For each dataset except MNIST, 70% of samples are randomly
selected for training, and the rest of the 30% of samples are used for
testing. On the MNIST dataset, we randomly select 20 000 samples
to make up the training set, and the remaining samples are testing
data. To mimic the real situation, each training set is also randomly
divided into the labeled subset and unlabeled subset by varying the
labeled ratio from 10% to 30% except Hdigit and MNIST. On the Hdigit
and MNIST datasets, only 1% to 3% of training samples are randomly
selected to assign class labels. To ensure a fair comparison, we tune
the parameters of all compared methods in the same way as described
in their respective literature, in which the regularization parameter is
tuned from {10−3, 10−2, . . . , 103}, and the weight-related parameter is
tuned from {1.5, 2.0, 2.5, 3.0}. In CFMSC, the 𝜆, 𝛽 and 𝛾 are also tuned
from {10−3, 10−2,… , 103}. To reduce the computational complexity of
CFMSC on the Hdigit and MNIST datasets, the acceleration strategy pro-
posed in Section 3.3 is applied to construct the anchor-based bipartite
graph to replace the 𝑛× 𝑛 entire graph. The number of anchors 𝑚 is set
according to the number of samples 𝑛 in different datasets. Specifically,
𝑘-means is used to generate 200 anchor points on the Hdigit dataset
and 500 anchor points on the MNIST dataset. To reduce the statistical
variability, all methods are independently run 20 times on different
training and testing sets, and the means and variances of classification
results on labeled and unlabeled data are recorded.

4.2.2. Experimental results on multi-view datasets
Comparison to Single-view Method. To demonstrate the superi-

ority of CFMSC over the representative single-view method, we first
compare the performance of CFMSC and FME with different percent-
ages of labeled data. The classification results are shown in Figs. 4 and
5, where S-FME and C-FME denote the best results of FME on each view
and the results by using the concatenated features, respectively.

From these figures, we observe that CFMSC consistently outper-
forms the single-view methods (i.e., S-FME and C-FME) on all datasets,
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which indicates that feature representations of different views are
distinct and CFMSC can obtain more informative knowledge from
multiple views. Meanwhile, CFMSC is superior to C-FME that directly
concatenates multiple views, and C-FME achieves better performance
than S-FME on all datasets except for Cal-7 and ORL, showing that
the effective fusion of feature information from different views can
greatly enhance the classification performance, whereas the improper
feature concatenation might degrade the performance. Consequently,
compared to S-FME which uses the single-view features, and C-FME
which indiscriminately uses multiple feature representations, CFMSC
can effectively utilize the correlations and distinctions among views as
well as coordinate different views via adaptively assigning appropriate
weights to them, such that the excellent views are emphasized while the
poor views are weakened, achieving better representation and fusion of
multi-view data.

Comparison to Multi-view Methods. To further validate the ef-
fectiveness of CFMSC, we compare it to the state-of-the-art multi-view
methods. The classification accuracies of CFMSC and other competitors
on unlabeled samples and testing samples are respectively recorded
in Tables 3 and 4, in which ‘‘OM" denotes an out-of-memory error
while running the experiment. The running time of multi-view semi-
supervised methods on eight datasets is provided in Table 5. The
proposed CFMSC shows better or highly competitive performance in
comparison with the state-of-the-art competitors on all datasets and
also achieves different levels of improvement on unlabeled and testing
samples. Specifically, CFMSC is considerably superior to the multi-
view supervised classification method (i.e., RAMC). Taking the Leaves
dataset as an example, CFMSC respectively achieves 11.75%, 10.65%
and 7.49% average improvements for the testing samples compared
with RAMC with varying the ratio of labeled samples from 10% to
30%, fully validating that mining the similarity structure of unlabeled
samples can enhance the performance. Compared with the multi-view
semi-supervised methods that focus on the similarity graph fusion
(i.e., MLAN, FMSEL, SMGI and AMEMC) or the feature projection
fusion (i.e., MVAR and JCD), CFMSC gains the competitive performance
on most datasets, showing its powerful effectiveness in multi-view
classification. On the MSRC-v1 dataset with 10% to 30% labeled sam-
ples, CFMSC respectively achieves 2.31%, 2.74% and 1.26% average
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Fig. 4. Classification accuracy comparison of FME and CFMSC on unlabeled data.
Fig. 5. Classification accuracy comparison of FME and CFMSC on testing data.
improvements for the unlabeled samples compared with the best results
of graph-based fusion methods, and it respectively achieves 2.09%,
2.50%, 1.48% and 1.47% average improvements for the testing samples
compared with the best results of projection-based fusion methods. Due
to the limited memory space of the computer, some graph-based fusion
methods encounter the out-of-memory error on the MNIST dataset,
such as MLAN, FMSEL and SMGI. Although another graph fusion
method (i.e., AMEMC) and two projection fusion methods (i.e., MVAR
and JCD) can be run on MNIST, these methods have poor classification
performance in dealing with this large-scale dataset. Moreover, on
the Hdigit and MNIST datasets, CFMSC not only achieves comparable
classification performance but also consumes less running time than the
graph-based fusion method and the projection-based fusion methods
except JCD, demonstrating that the anchor-based acceleration strategy
greatly reduces the computational complexity of CFMSC and thereby
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make it scalable to relatively large-scale data. In summary, the superior
classification accuracy and less time cost of CFMSC validate the effec-
tiveness and superiority of the proposed collaborative fusion of both
feature projections and similarity graphs.

Different from existing methods, CFMSC can simultaneously coa-
lesce multiple graphs and projection subspaces in an adaptive-weight-
ing manner. Benefiting from this fusion scheme, the view weights can
be adaptively optimized. The adaptive weights learned on all views
are reported in Table 6, from which we observe that different views
contribute variously to CFMSC. For example, on the Cal-7 dataset, the
sum of weights for view #1, view #2 and view #4 is greater than 0.95,
which means that the rest three views have much less contribution
for data fusion. The results in Table 6 demonstrate that CFMSC can
effectively discriminate different views, even though there exist the
low-quality views, such that the excellent views are emphasized while
the low-quality views are weakened. It is this mechanism that enables
CFMSC to make full use of the comprehensive information of multiple
views to achieve a complete fusion of multi-view data, facilitating

performance improvement.
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Table 3
Classification results (ACC% ± STD×102) of different methods on unlabeled data with various ratios of labeled data. The best results are in bold, and those not significantly worse
han the best are marked with * using the paired t-test at the 95% confidence level.
Datasets Ratio RAMC MVAR JCD MLAN FMSEL SMGI AMEMC CFMSC

MSRC-v1
10% 68.67 ± 5.32 89.90 ± 2.85* 89.45 ± 3.22* 87.95 ± 2.97 85.55 ± 2.80 85.65 ± 3.10 88.31 ± 2.56 90.62 ± 2.83
20% 79.85 ± 3.12 92.95 ± 2.16 92.59 ± 2.20 92.22 ± 2.34 90.19 ± 2.72 90.92 ± 2.69 90.15 ± 2.14 94.96 ± 1.58
30% 82.31 ± 2.27 95.04 ± 2.47 94.58 ± 2.30 94.16 ± 1.80 95.21 ± 2.39 93.18 ± 2.39 91.51 ± 1.51 96.47 ± 1.82

HW
10% 94.73 ± 0.59 96.16 ± 0.35 96.90 ± 0.43 96.60 ± 0.91 96.99 ± 0.62 97.33 ± 0.64* 95.09 ± 1.08 97.73 ± 0.38
20% 96.16 ± 0.32 96.93 ± 0.46 97.28 ± 0.52 97.81 ± 0.41 97.93 ± 0.48* 97.70 ± 0.56 97.27 ± 0.25 98.30 ± 0.34
30% 96.96 ± 0.24 97.26 ± 0.34 97.48 ± 0.42 98.38 ± 0.29* 98.52 ± 0.25* 97.99 ± 0.33 97.44 ± 0.31 98.57 ± 0.32

Cal-7
10% 79.58 ± 3.25 95.73 ± 2.15* 95.52 ± 0.56 93.51 ± 0.98 96.43 ± 0.74 93.75 ± 0.88 94.01 ± 1.50 96.38 ± 1.02*
20% 92.64 ± 2.05 97.23 ± 0.42* 95.58 ± 0.59 94.54 ± 0.66 97.13 ± 0.54* 95.66 ± 0.78 96.14 ± 0.53 97.49 ± 0.52
30% 92.93 ± 1.57 97.43 ± 0.45* 97.34 ± 0.94 96.83 ± 0.68 97.32 ± 0.39* 96.66 ± 0.68 96.88 ± 0.37 97.69 ± 0.49

ORL
10% 69.39 ± 3.91 85.18 ± 2.10 81.11 ± 2.09 85.73 ± 2.17 88.68 ± 1.33 87.21 ± 1.88 88.82 ± 2.99* 90.88 ± 1.68
20% 86.29 ± 3.39 93.13 ± 2.48 91.40 ± 1.97 95.29 ± 2.38 95.10 ± 2.24 95.67 ± 2.28* 94.94 ± 1.64 96.13 ± 1.97
30% 92.20 ± 3.13 97.10 ± 1.71 95.63 ± 3.56 97.57 ± 1.90 98.00 ± 1.82* 97.30 ± 1.64 96.65 ± 1.60 98.10 ± 1.46

COIL20
10% 95.15 ± 1.18 97.63 ± 1.49 96.83 ± 1.13 98.05 ± 1.01* 97.33 ± 0.72 97.17 ± 1.28 94.16 ± 1.27 98.32 ± 0.98
20% 96.63 ± 0.90 98.75 ± 0.71 98.53 ± 0.93 99.16 ± 0.94* 99.35 ± 0.51 98.95 ± 0.76* 97.01 ± 0.96 99.25 ± 0.55*
30% 97.65 ± 0.68 99.30 ± 0.37 99.22 ± 0.38 99.51 ± 0.52* 99.61 ± 0.43* 99.04 ± 0.37 98.92 ± 0.55 99.62 ± 0.39

Leaves
10% 72.58 ± 2.11 77.67 ± 1.65 79.70 ± 1.79 83.25 ± 2.70 84.82 ± 1.52* 84.41 ± 2.19 80.38 ± 1.43 85.34 ± 1.34
20% 81.55 ± 1.67 89.74 ± 1.55 90.22 ± 1.18 90.30 ± 1.87 93.82 ± 1.01 94.00 ± 0.89 91.28 ± 0.99 94.96 ± 0.69
30% 85.34 ± 1.23 90.81 ± 1.33 92.27 ± 1.07 92.43 ± 1.29 93.86 ± 1.24 95.66 ± 0.78 92.99 ± 0.87 96.84 ± 0.87

Hdigit
1% 82.65 ± 0.76 92.77 ± 0.47 90.76 ± 0.99 97.78 ± 0.73 97.53 ± 0.71* 97.11 ± 0.92* 93.16 ± 1.24 97.56 ± 0.64*
2% 89.28 ± 0.55 93.02 ± 0.42 92.46 ± 0.85 98.90 ± 0.55 98.81 ± 0.44* 98.68 ± 0.27* 95.33 ± 0.49 98.59 ± 0.43*
3% 91.08 ± 0.39 93.61 ± 0.27 93.83 ± 0.56 99.55 ± 0.24 99.34 ± 0.18* 99.34 ± 0.12 97.34 ± 0.40 99.51 ± 0.28*

MNIST
1% 67.31 ± 1.89 78.43 ± 1.30 73.43 ± 1.24 OM OM OM 77.19 ± 1.72 80.20 ± 1.12
2% 70.47 ± 1.35 80.09 ± 0.50 79.06 ± 1.11 OM OM OM 79.01 ± 1.20 81.77 ± 0.72
3% 70.93 ± 1.28 80.54 ± 0.40 80.71 ± 0.70 OM OM OM 80.45 ± 0.91 82.47 ± 0.58
Table 4
Classification results (ACC% ± STD×102 ) of different methods on testing data with various ratios of labeled data. The best results are in bold, and those not significantly worse
than the best are marked with * using the paired t-test at the 95% confidence level.

Datasets Ratio RAMC MVAR JCD FMSEL CFMSC

MSRC-v1
10% 68.81 ± 6.37 90.48 ± 2.79 88.69 ± 4.43 89.36 ± 4.63 92.98 ± 4.47
20% 80.12 ± 6.00 94.17 ± 3.04 95.31 ± 2.38* 95.07 ± 3.56* 96.79 ± 2.59
30% 81.79 ± 6.05 95.29 ± 3.03 96.86 ± 1.53 97.71 ± 1.75* 98.33 ± 1.56

HW
10% 94.31 ± 1.53 96.13 ± 1.19 96.49 ± 1.27 97.07 ± 0.78 98.08 ± 0.69
20% 95.20 ± 0.88 96.61 ± 0.90 96.86 ± 1.02 97.52 ± 0.66 98.33 ± 0.61
30% 96.75 ± 0.89 96.80 ± 0.72 97.23 ± 0.98 98.36 ± 0.46* 98.48 ± 0.60

Cal-7
10% 79.92 ± 4.16 96.81 ± 1.75 94.76 ± 1.72 96.63 ± 1.67 97.56 ± 1.06
20% 92.17 ± 2.49 97.08 ± 1.17* 95.22 ± 1.51 96.14 ± 1.11 97.62 ± 1.12
30% 92.73 ± 1.92 97.22 ± 1.01 97.27 ± 1.21 97.71 ± 1.15* 98.14 ± 1.05

ORL
10% 67.00 ± 5.60 85.94 ± 4.80 85.81 ± 5.40 87.13 ± 3.91 91.13 ± 4.07
20% 86.12 ± 5.56 94.75 ± 3.21 92.00 ± 3.13 95.06 ± 3.18 96.50 ± 2.21
30% 93.94 ± 3.98 98.00 ± 1.59* 97.44 ± 1.79 98.38 ± 1.47* 98.75 ± 1.57

COIL20
10% 94.86 ± 1.65 95.76 ± 1.68 96.51 ± 0.95 97.36 ± 1.01 98.51 ± 1.09
20% 96.63 ± 1.30 98.99 ± 0.49 98.66 ± 0.49 99.27 ± 0.48* 99.13 ± 0.52
30% 97.65 ± 0.48 99.14 ± 0.35* 99.27 ± 0.41* 99.55 ± 0.39* 99.65 ± 0.46

Leaves
10% 71.09 ± 2.11 77.59 ± 2.66 79.31 ± 1.89 79.66 ± 2.56 82.84 ± 2.69
20% 80.66 ± 1.54 88.94 ± 2.03 90.03 ± 1.80 87.72 ± 1.60 91.31 ± 1.28
30% 85.13 ± 1.41 91.19 ± 1.37 92.31 ± 1.38* 90.51 ± 1.12 92.62 ± 1.09

Hdigit
1% 83.69 ± 0.76 91.57 ± 0.89 90.00 ± 1.95 95.07 ± 1.31 97.65 ± 0.36
2% 90.39 ± 0.61 91.97 ± 0.75 92.67 ± 0.71 95.74 ± 0.55 98.26 ± 0.19
3% 91.18 ± 0.55 92.31 ± 0.64 94.16 ± 0.62 96.90 ± 0.53 98.70 ± 0.18

MNIST
1% 67.68 ± 1.86 80.13 ± 0.41 73.82 ± 1.18 OM 81.38 ± 0.72
2% 70.79 ± 2.20 81.00 ± 0.25 80.18 ± 0.75 OM 83.29 ± 0.21
3% 71.13 ± 1.22 81.47 ± 0.23 81.44 ± 0.56 OM 83.44 ± 0.16
Table 5
The average running time (seconds) of the multi-view semi-supervised methods on all datasets with 20% or 2% labeled data. OM denotes the
out-of-memory error.

Dataset MVAR JCD MLAN FMSEL SMGI AMEMC CFMSC

MSRC-v1 0.24 0.17 0.23 0.40 0.15 0.12 0.20
HW 4.10 0.48 10.85 20.51 2.36 1.65 4.77
Cal-7 6.02 2.15 12.47 16.59 5.29 1.16 6.47
ORL 0.40 0.61 0.62 1.02 0.13 0.14 0.28
COIL20 2.22 2.16 3.92 5.39 2.59 0.72 1.70
Leaves 1.51 0.51 4.54 5.31 2.97 0.69 1.04
Hdigit 29.26 15.02 393.63 85.66 64.50 36.17 5.68
MNIST 86.65 38.57 OM OM OM 205.23 41.93
45
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Fig. 6. The classification accuracy and running time versus the different number of anchors, in which (a) and (b) show the results on Hdigit, and (c) and (d) show the results on
MNIST.
Fig. 7. Classification results of CFMSC, CFMSC0, CFMSC1 and CFMSC2 on testing data.
Table 6
The learned average weight for each view using the proposed method.

View MSRC-v1 HW Cal-7 ORL COIL20 Leaves Hdigit MNIST

#1 0.187 0.355 0.378 0.238 0.415 0.390 0.525 0.394
#2 0.067 0.051 0.338 0.449 0.005 0.316 0.475 0.323
#3 0.201 0.315 0.035 0.238 0.454 0.294 – 0.283
#4 0.067 0.026 0.235 0.075 0.126 – – –
#5 0.194 0.248 0.009 – – – – –
#6 0.284 0.005 0.005 – – – – –
Effect of Anchor Points’ Number. From Section 3.3, we note that
the number of anchor points (i.e., 𝑚) has a direct effect on the com-
utation complexity of the acceleration strategy designed for CFMSC.
o quantitatively analyze the effect of anchors on the performance of
FMSC, we conduct experiments with different numbers of anchors.
n the Hdigit and MNIST datasets, the numbers of anchors vary from
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the ranges of {50,100, ⋯,500} and {100,200, ⋯,1000}, respectively.
For each number of anchors, CFMSC is independently run 20 times
with 2% labeled samples, and the parameters are set as same as that in
Table 3. The classification accuracy on unlabeled data and testing data
as well as the running time are shown in Fig. 6. From the results, we
observe that there exist different variation trends in the accuracy and
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Fig. 8. The accuracy variations of CFMSC with parameters 𝜆, 𝛽 and 𝛾 on Cal-7 and Hdigit.
Fig. 9. Variation curves of objective function values.
time as the number of anchors increases. Specifically, the classification
accuracy of CFMSC grows smoothly and then reaches a stable value as
depicted in Figs. 6(a) and (c). However, the running time significantly
increases along with the number of anchors as depicted in Figs. 6 (b)
and (d), which demonstrates that it is not suitable for CFMSC to use too
many anchor points. Consequently, to maintain comparable accuracy
and acceptable running time, we need to generate a proper number of
anchors in which the number of anchors should be much smaller than
the data size (i.e., 𝑚 ≪ 𝑛), and set a threshold for the number of anchors
on different datasets. Taking both the difference in data sizes and the
balance of classification ability and time cost into consideration, how
47
to determine the optimal number of anchor points on each dataset is
worthy of further research.

Ablation study. To further analyze the influence of the adap-
tive collaborative fusion of both feature projections and similarity
graphs, we conduct an ablation study in this subsection. Specifically, we
first remove the feature projection fusion part from CFMSC, and thus
get a simplified multi-view model (named CFMSC0) that treats each
projection subspace equally. CFMSC0 performs the multi-view fusion
from the aspect of similarity graphs. Accordingly, we can remove the
adaptive graph fusion part from CFMSC, thereby getting another multi-
view variant of CFMSC (named CFMSC ). CFMSC uses a fixed graph
1 1



Information Fusion 96 (2023) 37–50B. Jiang et al.

l
a
c
a
c

S

D

c
i

D

A

R
t ,
N
N
F

A

P

T

(i.e., 𝐒 =
∑𝑉

𝑣=1 𝐒
𝑣∕𝑉 ) and merely considers the feature projection-

evel fusion. Finally, we entirely remove the collaborative fusion part
nd thus get a single-view variant of CFMSC (named CFMSC2). The
lassification results on testing data with 20% or 2% of labeled samples
re depicted in Fig. 7. From the results, we observe that CFMSC is
onsistently superior to its two multi-view variants (i.e., CFMSC0 and

CFMSC1) which merely consider the multi-view data fusion in the level
of graph or projection. This indicates that the adaptive collaborative
fusion of feature projections and similarity graphs is indeed helpful
to boost the performance of multi-view classification. Benefiting from
this simultaneous fusion manner, CFMSC can obtain more informative
knowledge from multi-view data, not only improving the reliability of
label propagation but also making CFMSC learn a more discriminative
projection subspace. Meanwhile, the multi-view CFMSC0 and CFMSC1
also outperforms the single-view variant of CFMSC (i.e., CFMSC2)
which sets the view weights 𝛼𝑣 (𝑣 = 1,… , 𝑉 ) to be 1∕𝑉 , demonstrating
that it is inappropriate to treat each view equally and simply con-
catenate multiple views (i.e., projections and graphs) for classification.
This further verifies that our proposed fusion manner can discriminate
different views and simultaneously assign appropriate weights to them
such that the effects of low-quality views can be largely weakened. As a
result, it is effective and necessary to adaptively integrate both feature
projections and similarity graphs within a unified framework.

4.3. Parameter sensitivity and convergence analysis

In the proposed CFMSC, there are three parameters 𝜆, 𝛽, and 𝛾 that
need to be tuned, in which 𝜆 adjusts the over-fitting problem of the
feature projection fusion, 𝛽 controls the smoothness of label propaga-
tion, and 𝛾 balances the importance of the graph fusion and learning.
To investigate the influence of these parameters on performance, we
conduct experiments on the Cal-7 and Hdigit datasets. Specifically,
we change two parameters in the range of {10−3, 10−2, ..., 103} and
fix the other parameter as 1. The classification results on testing data
with 20% or 2% of labeled samples are depicted in Fig. 8. It can be
seen that CFMSC is not very sensitive to 𝛽, and is somewhat sensitive
to 𝜆 and 𝛾. CFMSC achieves relatively good results with varying 𝜆,
𝛽, and 𝛾 in the range of {10−1, 100, 101}, whereas CFMSC performs
worse when 𝜆 and 𝛾 are too small or large (e.g., 10−3), demonstrating
that the terms corresponding to 𝜆 and 𝛾 are particularly important
for CFMSC. Considering that the graph fusion and learning guarantees
that the fused graph can accurately propagate label information, and
the feature projection fusion facilitates learning a discriminative joint
feature projection, 𝜆 and 𝛾 should be appropriately set to balance
the importance of their corresponding terms in the proposed CFMSC.
According to the above analysis, we can first use a fixed 𝛽 and then
tune 𝜆 and 𝛾 by the grid search to achieve better performance.

The objective function of CFMSC is iteratively solved in Algorithm
1. In this part, we experimentally illustrate the convergence of CFMSC
on all multi-view datasets. Here, the ratio of labeled samples is also set
to 20% or 2%, and parameters 𝛾, 𝜆, and 𝛽 are set to 1. Fig. 9 shows
the variations of the objective function with the number of iterations.
We find that the objective function monotonically decreases at each
iteration and quickly converges within 15 iterations, demonstrating
that the adopted optimization solution is effective.

5. Conclusions

In this paper, we present an adaptive collaborative fusion method
for semi-supervised multi-view classification problem. Different from
existing methods that perform the multi-view fusion from the level
of graphs or projections independently, our formulation can adap-
tively discriminate different views and fuse multiple graphs as well
as projections within a unified framework simultaneously, obtaining
more informative knowledge from multi-view data. Benefiting from this
collaborative fusion scheme, the proposed CFMSC can learn a joint
48
feature projection and a unified similarity graph compatible across
different views, in which the correlation and diversity among views are
fully considered and effectively utilized. Moreover, CFMSC coalesces
different views in an adaptive-weighting manner without extra weight-
related parameters. Inspired by the anchor-based bipartite graph, an
acceleration strategy is designed to reduce the computational complex-
ity of CFMSC by using a small size of anchor points. Experimental
results on different datasets have validated the superiority of CFMSC
compared to the state-of-the-art competitors over the classification
performance and time cost.

Although CFMSC achieves its objectives, some interesting directions
are worthwhile in future research. First, we will extend CFMSC to
be a more general multi-view learning framework that can work in
unsupervised scenarios. Second, it is possible to use kernel tricks to
further enhance performance. Additionally, how to extend CFMSC to
effectively tackle the task that selects a minimal or optimal view subset
from multiple views will be studied in the future.
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ppendix A. Proof of Eq. (13)

roof. Since ∑𝑛
𝑖=1 𝑞𝑖 = 𝑛, thus the first term of Eq. (13) can be rewritten

by the Cauchy inequality:

𝑛
∑

𝑖=1

1
𝑞𝑖
‖

‖

‖

𝐟𝑖 −
𝑉
∑

𝑣=1
𝛼𝑣𝑾 𝑇

𝑣 𝒙
𝑣
𝑖
‖

‖

‖

2

2

≥ 1
𝑛
(

𝑛
∑

𝑖=1

‖

‖

‖

𝐟𝑖 −
𝑉
∑

𝑣=1
𝛼𝑣𝑾 𝑇

𝑣 𝒙
𝑣
𝑖
‖

‖

‖

2

)2 . (35)

According to Eq. (35), we have:
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herefore, we can further infer that:
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Hence we prove that Eq. (12) can be equivalent to Eq. (13).
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Appendix B. Proof of Eq. (16)

Proof. We first denote the objective function in Eq. (16) as 𝑔(𝑾 ,𝑭 ),
then the constant term Tr(𝒀 𝑇𝑼 𝑛𝒀 ) can be removed from 𝑔(𝑾 ,𝑭 ). Thus
(𝑾 ,𝑭 ) can be rewritten in matrix form as:

(𝑾 ,𝑭 ) = Tr

(

[

𝑭
𝑾

]𝑇

𝒁
[

𝑭
𝑾

]

)

− Tr

(

[

𝑭
𝑾

]𝑇 [

2𝑼 𝑛𝒀
𝟎

]

)

, (38)

here

=
[

𝑸 + 𝛽𝑳𝑺 + 𝑼 𝑛 −𝑸𝑿𝑇

−𝑿𝑸 𝑿𝑸𝑿𝑇 + 𝜆𝑨−1

]

∈ R(𝑛+𝑑)×(𝑛+𝑑). (39)

o prove that 𝑔(𝑾 ,𝑭 ) is jointly convex w.r.t. 𝑾 and 𝑭 , we only need
o prove that the matrix 𝒁 ∈ R(𝑛+𝑑)×(𝑛+𝑑) is positive semi-definite. For
n arbitrary vector 𝒗 = [𝒗𝑇1 , 𝒗

𝑇
2 ]

𝑇 ∈ R(𝑛+𝑑)×1, where 𝒗1 ∈ R𝑛×1 and
2 ∈ R𝑑×1, we have
𝑇𝒁𝒗 = 𝒗𝑇1 (𝛽𝑳𝑺 +𝑼 𝑛)𝒗1 +𝜆𝒗𝑇2 𝑨

−1𝒗2 + (𝒗1 −𝑿𝑇 𝒗2)𝑇𝑸(𝒗1 −𝑿𝑇 𝒗2). (40)

ince 𝑼 𝑛, 𝑨 and 𝑸 are all the nonnegative diagonal matrices, and the
aplacian matrix 𝑳𝑺 is positive semi-definite [40], we have 𝒗𝑇𝒁𝒗 ≥ 0,
roving that 𝒁 is positive semi-definite. Therefore, Eq. (16) is jointly
onvex w.r.t. 𝑾 and 𝑭 .

ppendix C. Optimization of Eq. (23)

According to [41], Eq. (23) can be solved by tackling its counter-
art:

min
≥0,𝜶𝑇 𝟏=1,𝒛
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𝜇
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‖

‖

2

2
, (41)

here 𝒛 ∈ R𝑉 ×1 denotes a slack variable, 𝜇 > 0 is a penalty parameter,
nd 𝝉 ∈ R𝑉 ×1 is a Lagrangian multiplier. Eq. (41) can be iteratively op-
imized by the augmented Lagrangian multiplier method. Specifically,

is gradually increased with step 𝛿 (1 < 𝛿 < 2) during each iteration,
aking 𝜶 and 𝒛 closer, then 𝝉 is updated by 𝝉 ← 𝝉+𝜇(𝜶−𝒛). When the
pdated 𝜶 and 𝒛 are sufficiently close to each other, Eq. (41) converges,
nd finally the optimal 𝜶 can be obtained. The solution steps are as
ollows:
Step 1. Update 𝒛: When 𝜶 is fixed, Eq. (41) is an unconstrained

ptimization problem. By setting the derivative of Eq. (41) w.r.t. 𝒛 to
ero, we update 𝒛 by:

= 𝜶 − 1
𝜇
(

𝑴𝜶 − 𝝉
)

. (42)

Step 2. Update 𝜶: When 𝒛 is fixed with its current value of 𝒛 (i.e., 𝒛∗),
𝜶 can be updated by minimizing the following problem:

min
𝜶𝑇 𝟏=1,𝜶≥0

‖

‖

‖

𝜶 − 𝒛∗ + 1
𝜇
(𝝉 +𝑴𝒛∗ − 𝒉)‖‖

‖

2

2
, (43)

which can be solved with a closed-form solution [35]. In this way, 𝜶 is
adaptively updated according to the aforementioned steps.
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