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ABSTRACT

Accurate brain tumor segmentation is an essential step for clinical diagnosis and surgical treatment. Mul-
timodal brain tumor segmentation strongly relies on an effective fusion method and an excellent seg-
mentation network. However, it is common to have some missing MR modalities in clinical scenarios
due to image corruption, acquisition protocol, scanner availability and scanning cost, which can heavily
decrease the tumor segmentation accuracy, and also cause information loss for down-streaming disease
analysis. To address this issue, I propose a novel multimodal feature fusion and latent feature learning
guided deep neural network. On the one hand, the proposed network can help to segment brain tumors
when one or more modalities are missing. On the other hand, it can retrieve the missing modalities to
compensate for incomplete data. The proposed network consists of three key components. First, a Mul-
timodal Feature Fusion Module (MFFM) is proposed to effectively fuse the complementary information
from different modalities, consisting of a Cross-Modality Fusion Module (CMFM) and a Multi-Scale Fu-
sion Module (MSFM). Second, a Spatial Consistency-based Latent Feature Learning Module (SC-LFLM) is
presented to exploit multimodal latent correlation and extract the relevant features to benefit segmenta-
tion. Third, the Multi-Task Learning (MTL) paths are integrated to supervise the segmentation and recover
the missing modalities. The proposed method is evaluated on BraTS 2018 dataset, and it can achieve su-
perior segmentation results when one or more modalities are missing, compared with the state-of-the-art
methods. Furthermore, the proposed modules can be easily adapted to other multimodal network archi-
tectures and research fields.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Brain tumors are the growths of abnormal cells in the brain
or central spinal canal. Gliomas are the most common types of
primary tumors that occur in the brain or spinal cord. Estimated
80,000 people are newly diagnosed with primary brain tumors
each year in the U.S. and around 25% of these are gliomas. Gliomas
can be roughly classified into two groups according to their grade:
High-Grade Gliomas (HGG) and Low-Grade Gliomas (LGG). Al-
though LGG is less aggressive than HGG, all LGG finally progress
to HGG and death [1-3]. Therefore, the early diagnosis of brain tu-
mor plays an important role in clinical practice. Diagnosing brain
tumors usually begins with MRI. MRI can provide better soft tissue
contrast and it is a non-invasive imaging technology. Also, we can
obtain 3-dimensional (3D) images from MRI In addition, MRI is a
multimodal imaging approach. It can express various contrasts due
to the various relaxation properties of the protons in the tissues.
The commonly used modalities are T1-weighted (T1), contrast-
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enhanced T1-weighted (T1c), Fluid Attenuation Inversion Recovery
(FLAIR) and T2-weighted (T2) images, shown in Fig. 1. Compared
to single modalities, multi-modalities can help to extract features
from different views and bring complementary information, con-
tributing to better data representation and discriminative power of
the network [4]. However, the complete MR modalities are usually
unavailable in most cases due to the different acquisition protocol,
image corruption, scanner availability and scanning cost.

In this paper, I propose a multimodal feature fusion and spa-
tial consistency-based latent feature learning network to segment
brain tumors as well as to recover the missing modalities. The con-
tributions of this work can be summarized as follows:

(1) To learn useful feature representations from different
modality data, a multimodal feature fusion model is presented.
It consists of a cross-modality fusion module which is based on
the self-attention model and a multi-scale fusion module. Through
these two modules, the network can selectively emphasize infor-
mative features and suppress less useful ones.

(2) In order to reveal the intrinsic relationship between multi-
ple modalities, I introduce a novel spatial consistency-based latent
feature learning module to exploit the multimodal correlation and
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Fig. 1. The commonly used four MR modalities with ground-truth, including three sub-tumor regions: edema, enhancing tumor and non-enhancing with necrosis (net&ncr).

learn the latent correlated features. Meanwhile, the learned corre-
lated features can be used to improve the segmentation.

(3) To achieve both brain tumor segmentation and missing data
recovery in a single network, multi-task learning is introduced in
this work, including a segmentation task, a reconstruction task and
a generation task. The multiple learning paths can not only fur-
ther supervise the target segmentation task but also generalize the
overall network by sharing knowledge among different tasks.

(4) Comprehensive experiments conducted on BraTS 2018
dataset demonstrate that the effectiveness of the proposed compo-
nents and the proposed method outperforms the state-of-the-art
methods.

The remainder of this paper is organized as follows:
Section 2 introduces the related work, Section 3 elaborates on the
proposed method, and Section 4 describes the experimental setup.
Section 5 presents the experimental results. Section 6 gives the
conclusion of the work.

2. Related works
2.1. Brain tumor segmentation with full modalities

Brain tumor segmentation in MRI remains challenging for sev-
eral reasons. For example, brain tumors can appear at variable lo-
cations with different sizes and shapes. In addition, brain tumor
are very heterogeneous, and the intensity value of a brain tumor
may overlap with the intensity value of the healthy brain tissue
[5-7]. In recent years, deep learning has demonstrated excellent
performance in a wide range of fields, such as object detection
[8], visual tracking [9], regression prediction [10], image classifi-
cation [11], image generation [12] and image segmentation [4]. Re-
searchers in the medical image field have also applied deep learn-
ing to tackle brain tumor segmentation in MRI [13,14]. Based on
the popular public multimodal brain tumor segmentation dataset
BraTs, a large number of approaches have been proposed. For ex-
ample, Kamnitsas et al. [15] proposed an ensemble of various CNNs
to realize a good generalization performance, which achieves the
best performance in the BraTS 2017 competition. Myronenko et al.
[16] introduced the variational auto-encoder (VAE) to a U-Net-
based brain tumor segmentation network. Jiang et al. [17] pro-
posed a two-stage cascaded U-Net to refine the segmentation re-
sults gradually. Isensee et al. [18] proposed nnU-Net and incorpo-
rated some BraTS-specific modifications regarding post-processing,
region-based training and data augmentation to improve the seg-
mentation accuracy.

2.2. Brain tumor segmentation with missing modalities

Despite the recent success of brain tumor segmentation ap-
proaches, their application to some specific issues is still limited,
such as segmentation in the case of missing modalities. It is diffi-
cult to always have complete modalities in clinical scenarios due
to the different acquisition protocols, image corruption, scanner
availability and scanning cost. In addition, the missing information

can cause restraints in MRI analysis, diagnosis and research stud-
ies. Thus, recovering the missing modalities is an essential step in
medical diagnosis, surgery treatment and medical research such as
segmentation, detection and multimodal registration [19].

In recent years, there exists a large amount of work in the field
of brain tumor segmentation with missing modalities. On the one
hand, some researchers attempted to retrieve the missing infor-
mation by exploiting the multimodal latent feature space. For ex-
ample, Havaei et al. [20] proposed a network named HeMIS and
Lau et al. [21] proposed a network named URN, both of which
proposed calculation of arithmetic operations (mean and variance)
to aggregate the independent features to obtain a shared latent
feature representation for segmentation. Chartsias et al. [22] pro-
posed to minimize the L1 or L2 distance between features from
different modalities to achieve the latent feature representation.
Dorent et al. [23] proposed a network named U-HeMIS to apply
multimodal variational auto-encoders to cope with the absence of
modalities. Chen et al. [24] introduced feature disentanglement to
address the missing data issue. Shen et al. [25] proposed a domain
adaptation approach to recover the information from the missing
modality. Zhu et al. [26] proposed a cascade module to supple-
ment the features of missing modalities. On the other hand, many
works have been proposed first synthesizing the missing modal-
ities, and then segmenting brain tumors using the existing and
synthesized modalities. For example, Islam et al. [19] designed a
synthesis model from multimodal MRI to single MRI modality, and
achieved the segmentation using both available and synthesized
modalities. However, this method can only cope with one missing
modality. A similar approach can be observed in the literature [27],
while the tasks of synthesis and segmentation are separately per-
formed. In this work, the proposed approach can not only segment
brain tumors with any number of missing modalities but also can
retrieve the missing modalities at the same time via a single deep
neural network.

2.3. Multi-task learning using deep neural networks

Multi-task learning aims to learn multiple tasks in parallel to
improve generalization by sharing knowledge among tasks [28,29].
Recently, MTL has attracted much attention in deep learning com-
munities including object detection [30,31], image classification
[32] and image segmentation [33]. MTL has also extended into
medical image segmentation. For example, Huang et al. [34] pro-
posed a deep multi-task learning framework to perform distance
estimation as well as tumor segmentation. Foo et al. [35] proposed
to combine image classification and image segmentation for di-
abetic retinopathy. Amyar et al. [36] proposed a multi-task deep
learning model to jointly identify COVID-19 patients and segment
COVID-19 lesions from chest CT images. MTL methods can be
categorized into hard and soft parameter-sharing methods. In hard
parameter sharing, multiple tasks are learned with shared network
layers and task-specific layers. In soft parameter sharing, each task
has its own model with its own parameters, and the distance be-
tween the parameters of the model is regularized to encourage the
parameters to be similar. Hard parameter sharing is the most com-
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CMFM: Cross-Modality Fusion Module
MSFM: Multi-Scale Fusion Module
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Fig. 2. The flowchart of the proposed method. Input modalities are first passed to the multi-encoders to extract independent features for each modality. Then, the feature
fusion and feature learning models are applied to learn the informative and correlated features. Following that, the decoders are utilised to achieve multi-task learning.
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Fig. 3. The architecture of the proposed network. Here I assume X; and X, modalities are missing. The network consists of four individual encoders to extract the indepen-
dent features for each modality, a cross-modality fusion model, a multi-scale fusion module, a latent feature learning module and three task-specific decoders. ¢ denotes

pixel-wise addition, © denotes pixel-wise multiplication, and © denotes concatenation.

monly used approach, which can decrease the risk of over-fitting
and reduce the training time compared to soft parameter sharing.
In this work, the hard parameter-sharing method is employed.

3. Methodology

The flowchart of the proposed method is presented in Fig. 2.
First, the available MR modalities are fed into the individual en-
coders to learn independent features for each modality. Then, a
multimodal feature fusion model is proposed to extract the infor-
mative features for segmentation, including a cross-modality fu-
sion module and a multi-scale fusion module. In addition, a spa-
tial consistency-based latent feature learning module is applied to
exploit the latent multimodal correlation and learn the correlated
features to benefit the segmentation. Following that, the multi-task
learning paths are implemented, consisting of the modality gener-
ation task for missing modalities, the modality reconstruction task
for available modalities, and the brain tumor segmentation task.
Multi-task learning can leverage useful information contained in
the multiple related tasks to help improve the generalization per-
formance of all the tasks [28]. The detailed network architecture is
presented in Fig. 3.

3.1. Motivation

Considering that multiple modalities can provide complemen-
tary information about tumor regions from different views, I first
propose a multimodal feature fusion model to selectively learn in-
formative features. The proposed fusion model can not only learn
cross-modality features but also extract multi-scale spatial contex-
tual feature information. In addition, the same tumor regions can
be observed in multiple modalities, so it is reasonable to assume
that a spatial consistency exists between modalities. To capture
the latent correlation between modalities, a latent feature learning
module is proposed. In addition, to recover the missing modalities,
multi-task learning is proposed to segment tumor regions as well
as to generate missing modalities.

3.2. Multimodal feature fusion model (MFFM)

Choosing an effective feature fusion approach plays an im-
portant role in segmentation tasks [37]. For multimodal brain
MR images, different MR modalities can highlight different tissue
structures and underlying anatomy. For example, tumor with per-
itumoral edema can be obviously distinguished from T2 modality
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Fig. 4. The architecture of the proposed CMFM. Here I take features f; and f; of modality i and modality j as an example. Each modality feature is first transformed to a set
of feature maps {g;, k;, v;} by three separate convolution operations. Then, the cross-modality weight att;; can be computed via pixel-wise multiplication between each pair
of feature maps {g;. k;} followed by a softmax function. It is noted that att;; is not the cross-modality attention weight, it is obtained from modality i and it can be computed
via pixel-wise multiplication between feature maps g; and k;, followed by a softmax function. Finally, the cross-modality feature can be obtained by multiplying the cross-
modality weight with the corresponding value v; and v;. The fused cross-modality feature f, of modality i can be obtained by a summation through all the cross-modality

features.

and FLAIR modality. The enhancing tumor core region can be
clearly observed in T1c modality. Therefore, a Multimodal Feature
Fusion Model (MFFM) is proposed to learn the multimodal com-
plimentary feature information, which consists of a Cross-Modality
Fusion Module (CMFM) and a Multi-Scale Fusion Module (MSFM),
through which the network can selectively emphasise informative
features and suppress less useful ones.

3.2.1. Cross-Modality fusion module (CMFM)

The proposed Cross-Modality Fusion Module (CMFM) is inspired
by the recent self-attention model [38] in machine translation.
A self-attention model computes the response at a position in
a sequence by learning a weighted average feature representa-
tion by considering all the positions. Convolution processes the
information in a local neighbourhood which is inefficient for
modelling long-range dependencies in images. To address this, the
self-attention model is adopted to enable the network to learn
non-local structures in the image to learn more useful feature
information for segmentation. Compared with the original self-
attention model, there are two improvements in the network: (1)
The self-attention model is applied to exploit the cross-modal fea-
tures in 3D feature representations, instead of the 1D sequences.
To achieve this, the scaled dot-product attention is replaced by
pixel-wise multiplication attention. (2) The multiplication oper-
ation between the input tensor and weight matrices (W, W,
Wy) is replaced by the convolution operation adapting to the 3D
feature representations. The architecture of the proposed CMFM is
presented in Fig. 4.

First, each independent feature f; is forwarded to three con-
volution blocks to obtain a series of feature maps {q;, k;, v;}, ¢; =
Wyi * fiy ki = W * fi, v; = Wy + f;, where Wy;, W; and W,; are the
convolution weights, = is the convolution operation. The cross-
modality attention weight att;; between modality i and modality
j can be computed via pixel-wise multiplication between g; and
kj, followed by a softmax function to normalize the weight.

att;j = softmax(q; © k;) "

where q;, k; are the feature maps of modality i and modality
Jj, respectively. © is the element-wise multiplication, and att;;

is the cross-modality attention weight between modality i and
modality j.

Then, the cross-modality feature can be calculated between
cross-modality attention weight att;; and the other correspond-
ing value v; via pixel-wise multiplication. Finally, the fused cross-

modality feature fi' can be obtained by summing up all the
cross-modality features. In this way, the network can learn cross-
modality features, which can enhance the important features and
also suppress the weak ones.

n
ﬂ = Z attijvj (2)
i,j=1
where fl’ is the fused cross-modality feature, att;; is the cross-
modality attention weight between modality i and modality j, it is
noted that att; is not the cross-modality attention weight, it is ob-
tained from modality i. v; is the learned feature map from modal-

ity j.

3.2.2. Multi-Scale fusion module (MSFM)

The spatial feature information is particularly important for the
segmentation task. In addition, different scale features can pro-
vide different receptive fields for the network, which can capture
more crucial information for segmentation. To achieve this, I pro-
pose a Multi-Scale Fusion Module (MSFM) to explore the mul-
timodal spatial feature information. The architecture of the pro-
posed MSFM is depicted in Fig. 5. In the proposed MSFM, the
independent features (fi, f2, f3, fa, ... fn) are first concatenated
as f=1[f1. fo. f3. fa...., fa], in this work, n=4. Then, two convolu-
tion operations with different kernel sizes (1 x 1 x 1 and 3 x 3 x 3)
are used to capture the multi-scale feature information for all
the modalities: sq = Wiq * f, s, = Wy, = f, where Wy, and Wy, are
the convolution weights, and they are modality specific. Here, the
choice of convolution kernel size is based on the brain tumor size,
the diameter of brain tumor is usually around 2.5 cm, and the
small kernel size can capture the pixel-wise features to help seg-
mentation. Following that, a sigmoid function is used to obtain the
space-wise weights o (sq) and o (sp). The two space-wise weights
0 (Sq) and o (sp) are then multiplied with the input feature f
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Fig. 5. The architecture of the proposed MSFM, the concatenated feature f is first passed to two convolution layers with a sigmoid function separately to learn the space-
wise weights. Then, these weights are multiplied with the input feature to obtain the features from different receptive fields f, fs. Finally, the two features are added

together to achieve the fused multi-scale feature f.

correlation expression (Eq.3)
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Fig. 6. The architecture of the proposed SC-LFLM. The concatenated features are first fed to a global average pooling to learn the overall feature. Then, they are passed
through two fully connected layers with LeakyReLU. A set of correlation parameters can be obtained. Following that, the correlated feature can be obtained via correlation
expression. In addition, correlation constraint loss is proposed to ensure the two distributions of the features is as close as possible.

to achieve the multi-scale features: fss =0 (Sq)f and fg = o (sp) f.
The final fused feature is obtained by summing the two multi-scale
features fs = fsq + fsp. With the assistance of the proposed MSFM,
the network can learn multi-scale spatial contextual feature infor-
mation between modalities to further improve the segmentation.

3.3. Spatial consistency-based latent feature learning module
(SC-LFLM)

For the same patient, we can obtain different MR modalities,
and these MR modalities can present different characteristics for
the same tumor regions. It is reasonable to assume that there ex-
ists a spatial consistency between modalities, indicating there is a
correlation on the same tumor regions between different modal-
ities. By investigating the joint intensities of the MR images [39],
we can observe a nonlinear correlation in intensity distribution be-
tween each pair of modalities. To exploit this correlation, a Spa-
tial Consistency-based Latent Feature Learning Module (SC-LFLM)
is proposed. The architecture of the proposed SC-LFLM is illus-
trated in Fig. 6. Through the MSFM module, a multi-scale fused
feature f; can be obtained. It is noted that f; consists of four fea-
tures: fs1, fs2. fs3, fs4, and each one represents a multi-scale fea-
ture, e.g. fs; represents the multi-scale feature of f;. First, a global
average pooling (GAP) followed by two fully connected layers is
used to map the multi-scale fused feature fs; (1024 channels) to
a set of correlation parameters for each of fy, fs, fs3, fsa. Here |
take f;; as an example, and the correlation parameters are I'; =
{ai, by, c1,dq, e, g1, hq}. These correlation parameters describe the
relationships between multi-modalities. Then, the correlated fea-
ture F;; of modality X; can be achieved via a nonlinear correlation
expression (Equation 3). Finally, the Kullback-Leibler divergence-
based correlation constraint loss (Equation 4) is proposed to mea-
sure the similarity between the estimated correlated feature and
the original feature of modality X;, the lower loss will attribute
to higher multimodal similarity. It is noticed that the abovemen-
tioned CMFM module is proposed to learn cross-modality features.
MSFM module is proposed to learn multi-scale spatial contextual

features. SC-LFLM module is based on the MSFM module, however,
it is proposed to exploit the correlation among different modal-
ities based on the same tumor region. In addition, a correlation
loss function is employed to encourage the network to learn latent
correlated features to benefit segmentation.

Fi=mofi+hofi+aofi+diofe
+e10f3+810 fu+h (3)

where F; is the correlated feature, and f,, fs3, fs4 are the original
features, and ay, by, c1, dq, ey, g1, hy are the correlation parameters.

P(fs1)
Q(E1)

where P(f1) and Q(F;) are probability distributions of the original
feature and the correlated feature from modality X;, and they are
estimated during training.

The total correlation loss function is defined as:

Lcon = P(fsl) lOg (4)

Leor = Lcon + Lcor2 + Lcor3 + Lcor4

(5)

where Leor;, Leory, Leor; and Leor, are the correlation loss functions
for modality Xi, X5, X3 and X4, respectively.

3.4. Multi-Task learning (MTL)

The proposed multi-task learning consists of three tasks: im-
age reconstruction for available modalities, image generation for
missing modalities, and image segmentation. The three tasks share
the same encoders and own their task-specific decoders, which al-
lows the individual tasks to learn a shared feature representation,
as well as to improve the generalization of the network. In addi-
tion, the auxiliary tasks (image reconstruction and generation) can
improve the performance of the target task (image segmentation).
The architecture of the network is depicted in Fig. 7. Specifically,
in the encoder, each layer includes a 3 x 3 x 3 convolution with
stride = 2 and a Res_dil block [40] except the first layer (the grey
block) where stride = 1. In the decoder, each layer consists of a 3D
upsampling layer, a 3 x 3 x 3 convolution and a Res_dil block. In
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Fig. 7. The architecture of the encoder-decoder for multi-task learning, where Outputge,, Outputy and Outputs,, denote the outputs of generation, reconstruction and seg-

mentation tasks, respectively.

addition, the layers in the encoder are skip-connected and con-
catenated with the corresponding layers in the decoder, which al-
lows the network to recover spatial information caused by down-
sampling and obtain the fine-grained details.

3.5. Loss function

The training loss function is defined in Equation 6, which con-
sists of three terms: Lseg, L1 and Leor. Lseg is the segmentation net-
work, Ly is the generation and reconstruction loss, and Lo is the
latent feature learning module loss, which is presented in Equa-
tion 5.

Ltotal = Lseg + ELl + chor (6)

where £ and i are the trade-off parameters, which are set empir-
ically as 0.1.

The segmentation loss function is based on the Dice loss,
which measures the overlap between the prediction region and the
ground truth region.

Zic=1 ZI}J:] Dij&ij + €
it Xt (pij + &) + €
where N indicates the number of pixels in the image, C is the num-
ber of the classes, p;; € [0, 1] is the output probability of pixel i for
class j, gjj € {0, 1} is the ground truth labelling of pixel i for class
j, and € is a small constant to avoid dividing by O.

The generation and reconstruction loss functions are based on

the L; loss, which compares the difference between the predicted
image and the ground-truth image.

N
L= lyi-Jil
i1

where N is the number of pixels in the image, y is the ground-
truth image, and j is the generated image.

Lseg =1- (7)

(8)

4. Experimental setup
4.1. Dataset and implementation details

The proposed method is evaluated on the public multimodal
brain tumor segmentation dataset BraTS 2018 [41], which contains
285 cases with ground-truth, each case has four MR modalities in-
cluding T1, FLAIR, T1c and T2. There are three segmentation labels:
Whole Tumor (WT), Tumor Core (TC) and Enhancing Tumor (ET).
The whole Tumor consists of all tumor tissues, Tumor Core consists

Table 1

The parameter settings of the network.
Parameters Value
Layer 6
Input size 128 x 128 x 128
Initial filter 8
Initial learning rate 0.0005
Optimizer Ndame
Batch size 1
Training samples 285
Segmentation labels (C) 3
v 0.1
3 0.1

of enhancing tumor, necrotic and non-enhancing tumor core. All
the provided data have been pre-processed by organisers, includ-
ing co-registering to the same anatomical template, interpolating
to the same resolution (1mm3) and skull-stripping. The ground-
truth labels have been manually labelled by experts. In this work,
the images are resized from 155 x 240 x 240 to 128 x 128 x 128.
Bias field correction is corrected by using the N4ITK tool. Each im-
age is normalized to a zero-mean, unit-variance space.

The proposed network is implemented with Keras using a sin-
gle Nvidia Tesla V100 (32G). Nadam is used as the optimizer, the
initial learning rate is set as 0.0005, which will be halved after 5
epochs if the validation loss is not improved. Early stopping is used
to avoid over-fitting, where the training will stop if the validation
loss is not improved over 10 epochs. The dataset is randomly split
into 80% training and 20% testing. The experimental results are ob-
tained by submitting the local results to the online evaluation plat-
form'. More details about the parameters are described in Table 1.

4.2. Evaluation metrics

4.2.1. Segmentation evaluation metrics

Two evaluation metrics are applied to calculate the segmenta-
tion performance, including Dice Similarity Coefficient (DSC) and
Hausdorff Distance (HD), and a higher value of DSC and a lower
value of HD are considered as the better results.

2|V, NV
[Vp| + Vgl

where V}, and V; denote the set of prediction and ground truth pix-
els for a given class, and | - | denote the volume of the enclosed

DSC = (9)

1 https://ipp.cbica.upenn.edu/
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Comparison results in terms of DSC between different methods on the BraTS 2018 dataset. Higher DSC values indicate better results. « denotes the included modality and o
denotes the missing one, bold results denote the best scores. WT, TC, and ET denote whole tumor, tumor core and enhancing tumor, respectively. AVG denotes the average
results on the three target regions, Mean denotes the average results on one target region across all the situations. = denotes the significant improvement evaluated via the

Wilcoxon test (p < .05).

Modality Baseline + CMFM + CMFM + MSFM + CMFM + MSFM + SC-LFLM
F T1I Tic T2 WT TC ET AVG  WT TC ET AVG  WT TC ET AVG  WT TC ET AVG
o o o . 751 457 282 497 715 457 16.1 444 709 400 17.1 427 803" 55.6° 33.9° 56.6
o o . ° 652 772 718 714 680* 804* 742* 742 688 819 751 752 703 829 749 76.0
o e ° ° 630 394 179 401 649* 450° 128 409 693* 47.7 177 449 737" 57.6° 336° 55.0
e o o o 822 523 283 543 822 553 243 539 833 565 275 558 849" 63.0° 385 621
o o . . 802 798 743 781 802 845 77.1* 806 783 844 778 802 81.7° 86.7° 782" 822
o e . ° 719 782 746 749 728  840¢ 760* 776 73.9* 841 774 785 755  851°  768*  79.1
o . ° ° 835 555 330 573 840  596* 323 586 852 610 327 596 864" 66.3° 425  65.1
o e ° . 787 491 312 530 774  532¢ 219 508 77.7* 550° 248 525 823 621 394" 613
« o ° . 835 531 341 569 833 56.6* 316 572 851* 593 342 595 859  651° 43.7° 649
e« o . ° 826 806 762 798 852 847 77.6° 825 847 843 784 825 858  865° 789" 837
o e . o 836 815 767 806 852* 854* 780° 829 850  85.1 787 829 86.6° 87.1° 788  84.1
o . ° . 841 553 354 583 842 58.1* 346  59.0 856+ 623* 376* 618 865  67.0° 453 663
« o . . 842 818 762 808 855 847 77.6° 826 853 847 785 829 864" 86.7° 788 839
o e . . 813 805 754 791 800  850° 775 808 797  85.1 782 810 826 868  78.1 82.5
o . . . 844 822 766 811 854 852* 778 828 851 85.1 78.6 829 865 87.0° 78.6  84.1

Mean 789 661 540 664 793 698 526 673 799 704 543 682 824 750 600 725

set. y and the generated image . ¢; and c; are to stabilize the division
. . with weak denominator.
HD = max{max mind(s, r), max mind(r, s)} (10)
seS reR reR  seS

where S and R are the two sets of the surface points of the predic-
tion and the real annotation, respectively, and d is the Euclidean
distance.

4.2.2. Generation evaluation metrics

Three evaluation metrics are applied to calculate the generation
performance, including Mean Squared Error (MSE), Peak Signal-to-
Noise Ratio (PSNR) and Structural Similarity Index (SSIM). In ad-
dition, Wilcoxon signed-rank test is applied to see the importance
of the proposed components. If the p-value is lower than 0.05, it
means there are significant improvements by using the proposed
components, which is denoted by * in the tables.

MSE is the simplest and most widely used quality metric, which
measures the average of the square of the errors between gener-
ated image and real image. It is calculated as:

n
MSE = 13" (i~ 51 ()
i=1
where n is the number of pixels in the image, y and j are the
ground-truth image and the generated image, respectively.
PSNR is applied to measure the prediction accuracy in terms of
the logarithmic decibel scale. The larger PSNR indicates that the
generation is of higher quality. It is defined as:

PSNR = 101og;, %

(12)
where Max is the maximum pixel value in the image.

SSIM is a perception-based model that considers image degra-
dation as perceived change in structural information. The larger
SSIM indicates that the generation is of higher quality. It is com-
puted as:

Quyiy + 1) (205 + ¢2)

SSIM = —
(g™ + 1 +c1) (02 + 07 + ¢2)

(13)

where wy, and ay2 are the mean and variance of the ground-truth

image y, 4y and 0)72 are the mean and variance of the generated

image J, and oy is the covariance between the ground-truth image

5. Experiment results and analysis
5.1. Ablation experiments

To analyze the effectiveness of the proposed strategies, the ab-
lation experiments are conducted based on a baseline method. The
baseline is the proposed method without using CMFM, MSFM and
SC-LFLM. From Table 2, first, it can be observed that an additional
input modality can result in statistically significant improvements.
In addition, the proposed CMFM can improve the baseline by 1.4%
in terms of average DSC, especially when only T1c modality is
available, a 3.9% improvement in terms of average DSC can be ob-
served. It can be explained that the CMFM can capture the cross-
modality feature information to help tumor segmentation. By com-
paring “Baseline” and “Baseline + CMFM + MSFM?”, it can be ob-
served that the segmentation accuracy is further boosted with a
2.7% improvement in terms of average DSC. Because the MSFM can
further improve the feature learning ability of the model by con-
sidering the multi-scale feature information. When the SC-LFLM
is integrated, the method can obtain a 9.2% performance gain in
terms of average DSC compared with the baseline method. A sig-
nificant increase of 37.2% in terms of average DSC can be observed
compared with the baseline method when only the T1 modality
exists. It demonstrates that the proposed latent feature learning
module can extract important feature information to aid brain tu-
mor segmentation. The Wilcoxon test results also show that the
proposed method can achieve significantly better accuracy than
other compared methods.

Besides, I also study the segmentation accuracy in terms of HD
in Table 3, from which it can be observed that the proposed CMFM,
MSFM and SC-LFLM can obtain improvements of 4.7%, 16.8%, and
34.6% in terms of average HD compared with the baseline, respec-
tively. More encouragingly, the significant improvements (denoted
by *) can be observed via the Wilcoxon test, which further reveals
the advantage of the proposed strategies.

5.2. Comparison with single-Task learning (STL) and dual-Task
learning (DTL)

Then, to validate the effectiveness of the proposed MTL (Multi-
Task Learning), I compare it with STL (Single-Task Learning), where
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Comparison results in terms of HD between different methods on BraTS 2018 dataset. Lower HD values indicate better results. e denotes the included modality and
o denotes the missing one, bold results denote the best scores. WT, TC, and ET denote whole tumor, tumor core and enhancing tumor, respectively. AVG denotes the
average results on the three target regions, Mean denotes the average results on one target region across all the situations. = denotes the significant improvement

evaluated via the Wilcoxon test (p < .05).

Modality Baseline Baseline + CMFM Baseline + CMFM + MSFM Baseline + CMFM + MSFM + SC-LFLM
F T1 Tlc T2 WT TC ET AVG WT TC ET AVG WT TC ET AVG WT TC ET AVG
o o ° . 139 199 187 175 225 242 222 230 14.0* 18.9 18.0 170 7.7° 1277 11.6° 10.7
o o . o 139 93 71 10.1 137 112 74 107 131+ 7.2 5.6 8.6 10.1 6.8 5.5 7.5
o e o o 191 260 230 227 167 174 184 175 13.1* 17.6 16.3* 156 10.0° 154 14.1 13.2
e o ° o 9.1 159 136 129 9.7 16.1 14.1 133  95* 13.9 12.6 120 5.2 11.8 10.9 9.3
o o . . 8.9 8.0 6.2 7.7 7.9 4.8 34 5.4 8.9 5.1 3.8 6.0 6.5" 4.0" 2.8" 4.4
o e . o 109 89 5.7 8.5 113 6.0 39 7.1 9.6 5.5 4.3 6.4 8.4 5.6 4.3 6.1
o o o o 7.4 13.7 125 112 82 135 122 113 76 12.9% 11.5¢ 106 5.8 10.8 10.9 9.2
o e o . 106 187 166 153 135 156 143 145 10.0 15.2 141 13.1 64" 11.6 113 9.8
e o o . 6.7 160 150 125 94 16.1 146 134 74 11.6¢ 10.00 9.7 4.9 114 9.9 8.7
e o . o 7.3 5.4 3.9 55 6.5 4.8 34 4.9 6.9 44 3.0 4.8 5.6" 3.9" 25 4.0
e o . o 6.4 5.5 3.8 52 6.7 4.5 3.0 4.7 6.2* 4.6 3.1 4.7 5.3" 3.5% 24 3.7
o« o o . 6.7 153 142 120 7.7 134 125 112 6.8 121 1077 9.9 4.6 9.6 9.2 7.8
e o . . 6.3 6.9 5.4 6.2 5.8 4.9 3.2 4.6 6.1 4.5% 3.0* 4.5 4.5" 3.6" 2.5" 3.5
o e . . 8.5 8.0 5.8 7.4 9.3 5.9¢ 4.6* 6.6 8.4 4.8 34 5.5 6.2" 4.1" 2.8" 4.4
o« o . . 6.6 7.0 5.7 6.4 5.8 4.7 3.0 4.5 6.2 4.7 3.1 4.7 4.6" 3.5% 23" 3.5

Mean 9.5 123 105 107 103 109 9.3 102 89 9.5 8.2 8.9 6.4 7.9 6.9 7.0

Table 4

Comparison results among STL, DTL and MTL in terms of DSC on BraTS 2018 dataset.  denotes the included modality and o denotes the missing one, bold results denote the
best scores. WT, TC, and ET denote whole tumor, tumor core and enhancing tumor, respectively. AVG denotes the average results on the three target regions, Mean denotes
the average results on one target region across all the situations. » denotes the significant improvement evaluated via the Wilcoxon test (p < .05).

Modality STL DTL (reconstruction) DTL (generation) MTL
F T1 Tlc T2 WT TC ET AVG WT TC ET AVG WT TC ET AVG WT TC ET AVG
o o o . 78.2 51.1 20.6 50.0 79.1 51.1 31.0 53.7 79.2 53.7 31.3 54.7 80.3 55.6" 33.9" 56.6
o o . o 70.7 84.1 76.8 77.2 69.1 82.6 743 75.3 69.3 82.9 74.9 75.7 70.3 82.9 74.9 76.0
o . ° o 69.7 49.9 17.3 45.6 72.0 54.1* 30.9* 52.3 72.1 54.0* 30.2¢ 52.1 73.7" 57.6" 33.6" 55.0
. o o o 84.6 63.1 27.5 58.4 84.0 60.3 34.9 59.7 84.0 61.0 35.8 60.3 84.9 63.0 38.5 62.1
° ° . . 80.1 85.4 77.6 81.0 80.7 86.7" 78.3* 81.9 81.5* 86.5* 78.4" 82.1 81.7" 86.7" 78.2% 82.2
o . . ° 74.1 85.7 77.7 79.2 74.2 85.4 77.2 78.9 75.4 85.5 77.2 79.4 75.5 85.1 76.8 791
. . ° o 85.9 67.1 35.7 62.9 86.2 64.6 40.2 63.7 86.4 64.3 40.2 63.6 86.4 66.3 42.5 65.1
° . ° . 81.3 59.8 29.8 57.0 81.6 59.2 37.6 59.5 81.9 58.8 35.8 58.8 82.3 62.1 394 61.3
. o o . 86.0 65.0 349 62.0 85.3 62.6 41.5 63.1 85.4 63.7 41.6 63.6 85.9 65.1 43.7 64.9
. ° . ° 85.1 86.3 78.3 83.2 85.7 85.9 78.7 834  86.0° 86.0 78.7 83.6 85.8* 86.5 78.9 83.7
. . . o 85.3 86.4 77.9 83.2 86.4 86.9 78.8 84.0 86.7" 86.7 78.7 84.0 86.6* 87.1 78.8 84.1
. . o . 86.3 67.3 39.7 64.4 86.3 65.3 43,5 65.0 86.3 65.5 429 64.9 86.5 67.0 453 66.3
. ° . . 85.9 86.0 77.8 83.2 86.1 86.5 78.6 83.7 86.4" 86.1 78.6 83.7 86.4" 86.7 78.8 83.9
o . . . 81.0 85.9 77.4 81.5 81.7 86.9 78.2 82.3 82.4* 86.8 78.1 824 82.6" 86.8 78.1 82.5
. . . . 85.9 86.0 77.6 83.2 86.3* 86.9 78.7 84.0 86.6" 86.8 78.6 84.0 86.5* 87.0 78.6 84.1
Mean 81.3 73.9 55.1 70.1 81.6 73.7 58.8 714 82.0 73.9 58.7 71.5 824 75.0 60.0 725

only the target segmentation task is applied, and DTL (Dual-Task
Learning), where both target segmentation task and reconstruc-
tion/generation task are applied. The comparison results are pre-
sented in Table 4 and Table 5. It can be observed that, with the
assistance of the reconstruction task, the segmentation result of
STL is improved by 1.9% in terms of average DSC. In addition, the
generation task can improve STL by 2.0% in terms of average DSC.
However, there is a slight decrease in terms of average HD on both
DTL tasks. Finally, when both reconstruction and generation tasks
are applied to the segmentation task, an improvement of 3.4% in
terms of average DSC and 6.7% in terms of average HD can be
observed. It can be explained that the multiple tasks can help to
learn more valuable feature information, and also provide some su-
pervision to the target task, leading to better segmentation results.
Therefore, the comparison results in Table 4 and Table 5 demon-
strate the effectiveness of integrating additional tasks into the tar-
get task. However, regarding to the computational cost, the STL use
100M around trainable parameters, and the MTL use 142M around
trainable parameters. The two auxiliary tasks take 42% more train-
ing parameters than STL. In future work, I will consider improving
the network architecture to decrease trainable parameters and re-
duce computational costs.

5.3. Comparison with the state-of-the-art segmentation methods

[ also compare the proposed method with several state-of-the-
art methods, which have been introduced in Section 2 as well as
with the U-HVED method from [23]. The comparison results are re-
ported in Table 6, and the results on HeMIS and U-HeMIS are cited
from the work [23]. From Table 6, it can be observed that the U-
Net-based method (U-HeMIS) can achieve better results than the
CNN-based network (HeMIS). Second, fusing multi-modalities by
Variational Auto-Encoder (VAE) (U-HVED) can further improve the
segmentation accuracy than simply calculating the mean and vari-
ance from the independent features (U-HeMIS). In addition, com-
pared with the current best method [23] (U-HVED), the proposed
method can obtain 12.1% improvement in terms of average DSC,
which indicates the proposed spatial consistency-based latent fea-
ture learning can further learn the informative features than VAE,
and it attributes to better segmentation results.

5.4. Evaluation of the generation results

Finally, in order to demonstrate that the proposed method
can provide good generation results, I evaluate the generation
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Table 5
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Comparison results among STL, DTL and MTL in terms of HD on BraTS 2018 dataset. ¢ denotes the included modality and o denotes the missing one, bold results denote the
best scores. WT, TC, and ET denote whole tumor, tumor core and enhancing tumor, respectively. AVG denotes the average results on the three target regions, Mean denotes
the average results on one target region across all the situations. = denotes the significant improvement evaluated via the Wilcoxon test (p < .05).

Modality STL DTL (reconstruction) DTL (generation) MTL
F T1 Tlc T2 WT TC ET AVG WT TC ET AVG WT TC ET AVG WT TC ET AVG
o o o . 9.7 13.8 13.6 12.4 8.9 13.7 12.7 11.8 9.2 133 12.2 11.6 7.7 12.7 11.6 10.7
° ° . o 10.0 5.2 4.0 6.4 12.1 9.0 7.7 9.6 12.4 8.0 6.7 9.0 10.1 6.8 5.5 7.5
o . o o 14.8 17.0 16.1 16.0 10.9* 14.8 135 131 10.9* 15.1 13.8 133 10.0" 154 14.1 13.2
. ° ° o 6.8 10.7 10.3 9.3 6.9 15.2 13.7 11.9 6.8 14.5 13.3 115 5.2" 11.8 109 9.3
° ° . . 7.0 4.5 3.2 49 6.7 44 3.0 4.7 6.7 44 3.2 4.8 6.5" 4.0 2.8 4.4
o . . o 9.2 4.8 3.6 5.9 84 5.1 3.6 5.7 84 5.2 3.8 5.8 84 5.6 43 6.1
. . ° o 6.2 9.7 8.8 8.2 6.0 11.0 111 9.4 5.9 11.7 11.2 9.6 5.8 10.8 109 9.2
o . o . 7.3 12.0 10.8 10.0 8.5 12.5 10.9 10.6 8.0 12.3 12.2 10.8 64" 11.6 113 9.8
. o o . 6.2 9.9 9.0 84 6.3 13.5 12.2 10.7 6.1 13.2 10.9 10.1 49 114 9.9 8.7
. ° . o 7.2 4.0 2.9 4.7 6.0 4.5 2.7 4.4 5.7* 38 25 4.0 5.6" 3.9 25 4.0
. . . o 6.3 4.0 2.9 4.4 4.7* 3.6 2.5 3.6 4.6" 3.7 24 3.6 5.3* 35 24 3.7
. . ° . 6.3 9.1 84 7.9 5.0 10.6 10.5 8.7 5.0 10.1 10.7 8.6 4.6 9.6 9.2 7.8
. o . . 5.4 4.0 2.9 4.1 4.8* 4.0 2.9 39 4.7* 4.1 2.8 3.9 4.5* 3.6 25 3.5
o . . . 8.0 4.5 33 53 7.0 4.7 2.8 4.8 6.6 4.2 29 4.6 6.2" 4.1 2.8 4.4
. . . . 5.5 4.1 2.9 4.2 4.7* 3.9 24 3.7 4.7* 43 2.8 3.9 4.6" 3.5 23 3.5
Mean 7.7 7.8 6.8 7.5 7.1 8.7 7.5 7.8 7.0 8.5 7.4 7.7 6.4 7.9 6.9 7.0
Table 6

Comparison of different methods in terms of DSC on BraTS 2018 dataset.  denotes the included modality and o denotes the missing one, bold results denote the best scores.
WT, TC, and ET denote whole tumor, tumor core and enhancing tumor, respectively. AVG denotes the average results on the three target regions, Mean denotes the average

results on one target region across all the situations.

Modality HeMIS [20] U-HeMIS [23] URN [21] U-HVED [23] Ours
F TI Tlc T2 WT TC ET AVG WT TC ET AVG WT TC ET AVG WT TC ET AVG WT TC ET AVG
o o o e 386 195 00 194 792 500 233 508 775 436 203 471 809 541 308 553 803 556 339 56.6
o o e o 26 65 111 67 585 585 608 593 622 585 558 588 624 667 655 649 703 829 749 76.0
o e o o 00 00 00 00 543 379 124 349 504 342 191 346 524 372 137 344 737 576 336 550
e« o o o 552 162 66 260 799 498 249 515 848 504 236 529 821 504 248 524 849 63.0 385 62.1
o o e e 482 458 558 499 810 691 686 729 803 689 676 723 827 737 702 755 817 867 782 822
o e e o 154 304 426 295 638 640 653 644 698 659 665 674 668 697 670 678 755 851 768 79.1
« o o o 711 119 12 281 839 567 290 565 855 526 253 545 843 553 242 546 864 663 425 65.1
o e o e 473 172 06 217 808 534 283 542 808 486 252 515 822 572 307 567 823 621 394 613
e o o e 748 177 08 311 860 587 280 576 863 507 252 541 875 597 346 606 859 651 437 649
e o e o 684 414 538 545 833 676 680 730 858 725 704 762 858 729 703 762 858 865 789 837
o o e o 702 488 609 600 851 707 699 752 856 720 710 762 862 742 711 772 866 871 788 84.1
e o o e 752 187 10 316 870 610 334 605 861 525 258 548 880 615 341 612 865 67.0 453 66.3
e o e e 756 549 605 637 870 722 697 763 865 722 698 762 886 756 712 785 864 867 788 839
o e e e 442 466 551 486 821 707 697 742 811 695 685 73.0 833 753 71.1 766 826 868 781 825
o o e e 738 553 61.1 634 876 734 708 773 863 718 699 760 888 764 717 790 865 87.0 78.6 84.1
Average 50.7 287 274 281 786 597 481 621 793 589 469 617 80.1 640 500 647 824 750 600 725

performance of the proposed method using three evaluation met-
rics: MSE, PSNR and SSIM. The comparison results are presented
in Table 7. Overall, it can be observed the proposed network can
obtain a stable generation performance no matter if any number
of modalities are missing. For the Flair modality, the average
generation accuracy is 0.033, 0.85 and 28.34 in terms of MSE,
SSIM and PSNR, respectively, across all the missing situations; For
the T1 modality, the average generation accuracy is 0.027, 0.86
and 25.62 in terms of MSE, SSIM and PSNR, respectively; For T1c
modality, the average generation accuracy is 0.017, 0.86 and 32.15
in terms of MSE, SSIM and PSNR, respectively; For T2 modality,
the average generation accuracy is 0.11, 0.80 and 22.98 in terms
of MSE, SSIM and PSNR, respectively. The experimental results
indicate that the proposed method can achieve good generation
performance to help to recover the missing modalities. In addition,
comparing the generation accuracy among the four modalities, it
can be observed that the generation accuracy of Flair, T1 and Tlc
modalities is better than T2 modality. I explain that the timing
of radiofrequency pulse sequences makes T2 modality different
from other three modalities, for example, as is shown in Fig. 1,
Cerebrospinal Fluid (CSF) is bright on T2 modality and dark on
Flair, T1 and T1c modalities. Therefore, the generation accuracy of
T2 modality is not better than the others.

5.5. Visualization of the segmentation and generation results

[ also visualize the segmentation and generation results of
the proposed method in Fig. 8. On the one hand, from the seg-
mentation result, firstly, it can be observed that when only the
FLAIR modality is available, it can detect most parts of brain
tumor regions, indicating the important role of the FLAIR modality
among these four MRI modalities. Secondly, when the T1c modal-
ity is integrated, the network can achieve good results. Significant
improvements in DSC can be seen on both tumor core (+28.9%)
and enhancing tumor (+99.5%) regions. Lastly, the T2 modality can
further refine the results. On the other hand, from the generation
results, it can be observed when only the FLAIR modality is
available, it can obtain good generation results for both T1 and T2
modalities. When the T1c modality is included as the input (3rd
and 4th row), the generated T1 and T2 modality can further high-
light the tumor core region, resulting from the shared encoders
with the segmentation network. In turn, the highlighted tumor
regions can also boost the segmentation network to achieve better
results.

From Fig. 9, in each row, it can be observed that with the
help of the proposed strategies, the segmentation results can be
gradually refined. In each column, with the increasing number
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Generation results of the proposed method evaluated by MSE, SSIM and PSNR on BraTS 2018 dataset. e denotes the included modality and o denotes the missing one. The

colours distinguish the generation results of different modalities.

Modality Generation Evaluation Metrics
F T1 Tic T2 MSE | SSIM 4 PSNR 4
o ° o . F: 0.048 T1: 0.03 Tlc: 0.02 F: 0.83 T1: 0.85 Tlc: 0.85 F: 26.62 T1: 25.65 T1c: 30.02
o o . o F: 0.028 T1: 0.025 T2: 0.097 F: 0.84 T1: 0.86 T2: 0.80 F: 28.37 T1: 27.33 T2: 22.78
o . ° o F: 0.029 Tlc: 0.019 T2: 0.12 F: 0.86 Tlc: 0.87 T2: 0.80 F: 29.11 Tlc: 31.16 T2: 22.96
. ° o o T1: 0.034 Tlc: 0.027 T2: 0.12 T1: 0.84 Tlc: 0.84 T2: 0.80 T1: 24.99 Tlc: 29.89 T2: 22.32
o ° . . F: 0.038 T1: 0.025 F: 0.84 T1: 0.87 F: 27.75 T1: 21.55
o . . o F: 0.025 T2: 0.097 F: 0.89 T2: 0.81 F: 29.46 T2: 23.25
. . o o Tlc: 0.018 T2: 0.11 Tlc: 0.86 T2: 0.80 Tlc: 39.0 T2: 23.1
o . o . F: 0.034 Tlc: 0.014 F: 0.84 Tlc: 0.88 F: 28.38 Tlc: 31.84
. ° ° . T1: 0.026 T1c: 0.016 T1: 0.86 T1c: 0.86 T1: 26.16 Tlc: 31.15
. o . o T1: 0.026 T2: 0.11 T1: 0.85 T2: 0.80 T1: 26.47 T2: 23.13
. . . ° T2: 0.10 T2: 23.32
. . o . T1c: 0.01 Tlc: 32.0
. o . . T1: 0.024 T1: 27.21
o . . . F: 28.69
edema
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Fig. 8. The visualization of the segmentation and generation results of the proposed method. The first row presents the input modalities and the segmentation ground-truth.
The next three rows present the generation and segmentation results in different missing modality situations. The last row presents the full modalities situation. DSC is

denoted for each example.

of modalities, the segmentation results are improved progres-
sively. Especially, from the second and third rows, it can be seen
that integrating the T1c modality can significantly improve the
segmentation results on both tumor core and enhancing tumor
regions. This is consistent with the observation in Fig. 8, where
the T1c modality is more sensitive to tumor core and enhancing
tumor regions. To summarize, the visualization results show that
the proposed method is able to achieve competitive segmentation

10

when modalities are missing and can also generate the missing
modalities at the same time.

5.6. Visualization of the feature maps
To further demonstrate the effectiveness of the proposed strate-

gies, 1 visualize for various subsets of the strategies the feature
maps extracted from the second-to-last layer in the segmenta-
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88.6-67.5-25.3 93.5-63.9-34.3 93.0-69.1-37.9 92.4-72.8-43.2
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89.4-93.2-80.3 93.2-92.5-80.8 92.5-92.8-81.6 91.3-93.8-86.2
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Fig. 9. The visualization of the segmentation results between different methods. The first row presents the input modalities and the segmentation ground-truth. The last
four rows present the segmentation results in different missing modality situations between different methods. (1) Baseline, (2) + CMFM, (3) + CMFM + MSFM, (4) + CMFM
+ MSFM + SC-LFLM, DSC on the whole tumor, tumor core and enhancing tumor regions are denoted under each example. The green circle highlights the segmentation
differences along columns. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(1) Baseline

(2) + CMFM

(3) + CMFM + MSFM

(4) +CMFM + MSFM + SC-LFLM (Ours)

Fig. 10. The visualization of the feature maps between different methods.

1
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tion decoder. From Fig. 10, it can be observed that with the help
of the proposed strategies, the interested tumor regions become
more obvious in the feature maps. Specifically, from the second
and third columns, it can be observed employing the multi-scale
feature information can significantly highlight the target tumor
regions, especially for the edema region, aiding the network to
learn more discriminative features for segmentation. Furthermore,
based on the spatial consistency of multi-modalities, considering
the latent relationships between different modalities can further
obtain better feature information. Therefore, the comparison re-
sults in Fig. 10 demonstrate the effectiveness of the proposed
method.

6. Discussion and conclusion

In this work, I proposed a novel multimodal feature fusion and
latent feature learning guided deep neural network for brain tu-
mor segmentation and missing modality recovery. Considering that
the multi-modalities can provide complementary information for
brain tumor segmentation, I propose to enhance the feature learn-
ing ability by introducing a multimodal feature fusion model, con-
sisting of a cross-modality fusion module and a multi-scale fu-
sion module. The cross-modality fusion module adopts the self-
attention mechanism to learn non-local structures in the image.
The multi-scale fusion module is proposed to capture multimodal
spatial contextual feature information. Thanks to the two modules,
the network can learn more rich features across multi-modalities.
In addition, since the same tumor regions can be observed by dif-
ferent MR modalities, there is a spatial consistency between multi-
modalities for the same patient. To this end, I proposed a spa-
tial consistency-based latent feature learning module to learn the
latent multimodal correlation, and also extract the relevant fea-
tures to help segmentation. Furthermore, to compensate for the
incomplete set of modalities, I propose to use multi-task learn-
ing to retrieve the missing modalities. Three generation evaluation
metrics including MSE, PSNR and SSIM proved that the proposed
network can achieve a stable generation performance with any
number of missing modalities. Comprehensive experiments evalu-
ated on BraTS 2018 dataset demonstrate that the proposed method
can achieve superior segmentation results than the state-of-the-art
methods. The proposed method is evaluated on BraTS 2018 dataset,
while it can be generalized to other multimodal datasets. Besides,
the proposed components such as the multimodal feature fusion
model can be easily adapted to other neural network architectures
and research fields.

However, there are some limitations in the work that inspire
future directions. First, an encoder-decoder-based network is used
for image generation, the potential future direction is to improve
the generator architecture. For example, a Generative Adversarial
Network (GAN) can be considered to generate high-quality images,
as well as to further enhance segmentation accuracy. Second, the
multi-task learning architecture can be improved to reduce train-
ing parameters and computational costs. Finally, other approaches
to explore latent feature representations can be further investi-
gated to improve the results.
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