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a b s t r a c t 

Accurate brain tumor segmentation is an essential step for clinical diagnosis and surgical treatment. Mul- 

timodal brain tumor segmentation strongly relies on an effective fusion method and an excellent seg- 

mentation network. However, it is common to have some missing MR modalities in clinical scenarios 

due to image corruption, acquisition protocol, scanner availability and scanning cost, which can heavily 

decrease the tumor segmentation accuracy, and also cause information loss for down-streaming disease 

analysis. To address this issue, I propose a novel multimodal feature fusion and latent feature learning 

guided deep neural network. On the one hand, the proposed network can help to segment brain tumors 

when one or more modalities are missing. On the other hand, it can retrieve the missing modalities to 

compensate for incomplete data. The proposed network consists of three key components. First, a Mul- 

timodal Feature Fusion Module (MFFM) is proposed to effectively fuse the complementary information 

from different modalities, consisting of a Cross-Modality Fusion Module (CMFM) and a Multi-Scale Fu- 

sion Module (MSFM). Second, a Spatial Consistency-based Latent Feature Learning Module (SC-LFLM) is 

presented to exploit multimodal latent correlation and extract the relevant features to benefit segmenta- 

tion. Third, the Multi-Task Learning (MTL) paths are integrated to supervise the segmentation and recover 

the missing modalities. The proposed method is evaluated on BraTS 2018 dataset, and it can achieve su- 

perior segmentation results when one or more modalities are missing, compared with the state-of-the-art 

methods. Furthermore, the proposed modules can be easily adapted to other multimodal network archi- 

tectures and research fields. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Brain tumors are the growths of abnormal cells in the brain 

r central spinal canal. Gliomas are the most common types of 

rimary tumors that occur in the brain or spinal cord. Estimated 

0,0 0 0 people are newly diagnosed with primary brain tumors 

ach year in the U.S. and around 25% of these are gliomas. Gliomas 

an be roughly classified into two groups according to their grade: 

igh-Grade Gliomas (HGG) and Low-Grade Gliomas (LGG). Al- 

hough LGG is less aggressive than HGG, all LGG finally progress 

o HGG and death [1–3] . Therefore, the early diagnosis of brain tu- 

or plays an important role in clinical practice. Diagnosing brain 

umors usually begins with MRI. MRI can provide better soft tissue 

ontrast and it is a non-invasive imaging technology. Also, we can 

btain 3-dimensional (3D) images from MRI. In addition, MRI is a 

ultimodal imaging approach. It can express various contrasts due 

o the various relaxation properties of the protons in the tissues. 

he commonly used modalities are T1-weighted (T1), contrast- 
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nhanced T1-weighted (T1c), Fluid Attenuation Inversion Recovery 

FLAIR) and T2-weighted (T2) images, shown in Fig. 1 . Compared 

o single modalities, multi-modalities can help to extract features 

rom different views and bring complementary information, con- 

ributing to better data representation and discriminative power of 

he network [4] . However, the complete MR modalities are usually 

navailable in most cases due to the different acquisition protocol, 

mage corruption, scanner availability and scanning cost. 

In this paper, I propose a multimodal feature fusion and spa- 

ial consistency-based latent feature learning network to segment 

rain tumors as well as to recover the missing modalities. The con- 

ributions of this work can be summarized as follows: 

(1) To learn useful feature representations from different 

odality data, a multimodal feature fusion model is presented. 

t consists of a cross-modality fusion module which is based on 

he self-attention model and a multi-scale fusion module. Through 

hese two modules, the network can selectively emphasize infor- 

ative features and suppress less useful ones. 

(2) In order to reveal the intrinsic relationship between multi- 

le modalities, I introduce a novel spatial consistency-based latent 

eature learning module to exploit the multimodal correlation and 

https://doi.org/10.1016/j.patcog.2023.109665
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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Fig. 1. The commonly used four MR modalities with ground-truth, including three sub-tumor regions: edema, enhancing tumor and non-enhancing with necrosis (net&ncr). 
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earn the latent correlated features. Meanwhile, the learned corre- 

ated features can be used to improve the segmentation. 

(3) To achieve both brain tumor segmentation and missing data 

ecovery in a single network, multi-task learning is introduced in 

his work, including a segmentation task, a reconstruction task and 

 generation task. The multiple learning paths can not only fur- 

her supervise the target segmentation task but also generalize the 

verall network by sharing knowledge among different tasks. 

(4) Comprehensive experiments conducted on BraTS 2018 

ataset demonstrate that the effectiveness of the proposed compo- 

ents and the proposed method outperforms the state-of-the-art 

ethods. 

The remainder of this paper is organized as follows: 

ection 2 introduces the related work, Section 3 elaborates on the 

roposed method, and Section 4 describes the experimental setup. 

ection 5 presents the experimental results. Section 6 gives the 

onclusion of the work. 

. Related works 

.1. Brain tumor segmentation with full modalities 

Brain tumor segmentation in MRI remains challenging for sev- 

ral reasons. For example, brain tumors can appear at variable lo- 

ations with different sizes and shapes. In addition, brain tumor 

re very heterogeneous, and the intensity value of a brain tumor 

ay overlap with the intensity value of the healthy brain tissue 

5–7] . In recent years, deep learning has demonstrated excellent 

erformance in a wide range of fields, such as object detection 

8] , visual tracking [9] , regression prediction [10] , image classifi- 

ation [11] , image generation [12] and image segmentation [4] . Re- 

earchers in the medical image field have also applied deep learn- 

ng to tackle brain tumor segmentation in MRI [13,14] . Based on 

he popular public multimodal brain tumor segmentation dataset 

raTS, a large number of approaches have been proposed. For ex- 

mple, Kamnitsas et al. [15] proposed an ensemble of various CNNs 

o realize a good generalization performance, which achieves the 

est performance in the BraTS 2017 competition. Myronenko et al. 

16] introduced the variational auto-encoder (VAE) to a U-Net- 

ased brain tumor segmentation network. Jiang et al. [17] pro- 

osed a two-stage cascaded U-Net to refine the segmentation re- 

ults gradually. Isensee et al. [18] proposed nnU-Net and incorpo- 

ated some BraTS-specific modifications regarding post-processing, 

egion-based training and data augmentation to improve the seg- 

entation accuracy. 

.2. Brain tumor segmentation with missing modalities 

Despite the recent success of brain tumor segmentation ap- 

roaches, their application to some specific issues is still limited, 

uch as segmentation in the case of missing modalities. It is diffi- 

ult to always have complete modalities in clinical scenarios due 

o the different acquisition protocols, image corruption, scanner 

vailability and scanning cost. In addition, the missing information 
2 
an cause restraints in MRI analysis, diagnosis and research stud- 

es. Thus, recovering the missing modalities is an essential step in 

edical diagnosis, surgery treatment and medical research such as 

egmentation, detection and multimodal registration [19] . 

In recent years, there exists a large amount of work in the field 

f brain tumor segmentation with missing modalities. On the one 

and, some researchers attempted to retrieve the missing infor- 

ation by exploiting the multimodal latent feature space. For ex- 

mple, Havaei et al. [20] proposed a network named HeMIS and 

au et al. [21] proposed a network named URN, both of which 

roposed calculation of arithmetic operations (mean and variance) 

o aggregate the independent features to obtain a shared latent 

eature representation for segmentation. Chartsias et al. [22] pro- 

osed to minimize the L1 or L2 distance between features from 

ifferent modalities to achieve the latent feature representation. 

orent et al. [23] proposed a network named U-HeMIS to apply 

ultimodal variational auto-encoders to cope with the absence of 

odalities. Chen et al. [24] introduced feature disentanglement to 

ddress the missing data issue. Shen et al. [25] proposed a domain 

daptation approach to recover the information from the missing 

odality. Zhu et al. [26] proposed a cascade module to supple- 

ent the features of missing modalities. On the other hand, many 

orks have been proposed first synthesizing the missing modal- 

ties, and then segmenting brain tumors using the existing and 

ynthesized modalities. For example, Islam et al. [19] designed a 

ynthesis model from multimodal MRI to single MRI modality, and 

chieved the segmentation using both available and synthesized 

odalities. However, this method can only cope with one missing 

odality. A similar approach can be observed in the literature [27] , 

hile the tasks of synthesis and segmentation are separately per- 

ormed. In this work, the proposed approach can not only segment 

rain tumors with any number of missing modalities but also can 

etrieve the missing modalities at the same time via a single deep 

eural network. 

.3. Multi-task learning using deep neural networks 

Multi-task learning aims to learn multiple tasks in parallel to 

mprove generalization by sharing knowledge among tasks [28,29] . 

ecently, MTL has attracted much attention in deep learning com- 

unities including object detection [30,31] , image classification 

32] and image segmentation [33] . MTL has also extended into 

edical image segmentation. For example, Huang et al. [34] pro- 

osed a deep multi-task learning framework to perform distance 

stimation as well as tumor segmentation. Foo et al. [35] proposed 

o combine image classification and image segmentation for di- 

betic retinopathy. Amyar et al. [36] proposed a multi-task deep 

earning model to jointly identify COVID-19 patients and segment 

OVID-19 lesions from chest CT images. MTL methods can be 

ategorized into hard and soft parameter-sharing methods. In hard 

arameter sharing, multiple tasks are learned with shared network 

ayers and task-specific layers. In soft parameter sharing, each task 

as its own model with its own parameters, and the distance be- 

ween the parameters of the model is regularized to encourage the 

arameters to be similar. Hard parameter sharing is the most com- 
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Fig. 2. The flowchart of the proposed method. Input modalities are first passed to the multi-encoders to extract independent features for each modality. Then, the feature 

fusion and feature learning models are applied to learn the informative and correlated features. Following that, the decoders are utilised to achieve multi-task learning. 

Fig. 3. The architecture of the proposed network. Here I assume X 1 and X 2 modalities are missing. The network consists of four individual encoders to extract the indepen- 

dent features for each modality, a cross-modality fusion model, a multi-scale fusion module, a latent feature learning module and three task-specific decoders. 
⊕ 

denotes 

pixel-wise addition, 
⊙ 

denotes pixel-wise multiplication, and © denotes concatenation. 
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only used approach, which can decrease the risk of over-fitting 

nd reduce the training time compared to soft parameter sharing. 

n this work, the hard parameter-sharing method is employed. 

. Methodology 

The flowchart of the proposed method is presented in Fig. 2 . 

irst, the available MR modalities are fed into the individual en- 

oders to learn independent features for each modality. Then, a 

ultimodal feature fusion model is proposed to extract the infor- 

ative features for segmentation, including a cross-modality fu- 

ion module and a multi-scale fusion module. In addition, a spa- 

ial consistency-based latent feature learning module is applied to 

xploit the latent multimodal correlation and learn the correlated 

eatures to benefit the segmentation. Following that, the multi-task 

earning paths are implemented, consisting of the modality gener- 

tion task for missing modalities, the modality reconstruction task 

or available modalities, and the brain tumor segmentation task. 

ulti-task learning can leverage useful information contained in 

he multiple related tasks to help improve the generalization per- 

ormance of all the tasks [28] . The detailed network architecture is 

resented in Fig. 3 . 
3 
.1. Motivation 

Considering that multiple modalities can provide complemen- 

ary information about tumor regions from different views, I first 

ropose a multimodal feature fusion model to selectively learn in- 

ormative features. The proposed fusion model can not only learn 

ross-modality features but also extract multi-scale spatial contex- 

ual feature information. In addition, the same tumor regions can 

e observed in multiple modalities, so it is reasonable to assume 

hat a spatial consistency exists between modalities. To capture 

he latent correlation between modalities, a latent feature learning 

odule is proposed. In addition, to recover the missing modalities, 

ulti-task learning is proposed to segment tumor regions as well 

s to generate missing modalities. 

.2. Multimodal feature fusion model (MFFM) 

Choosing an effective feature fusion approach plays an im- 

ortant role in segmentation tasks [37] . For multimodal brain 

R images, different MR modalities can highlight different tissue 

tructures and underlying anatomy. For example, tumor with per- 

tumoral edema can be obviously distinguished from T2 modality 
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Fig. 4. The architecture of the proposed CMFM. Here I take features f i and f j of modality i and modality j as an example. Each modality feature is first transformed to a set 

of feature maps { q i , k i , v i } by three separate convolution operations. Then, the cross-modality weight att i j can be computed via pixel-wise multiplication between each pair 

of feature maps { q i , k j } followed by a softmax function. It is noted that att ii is not the cross-modality attention weight, it is obtained from modality i and it can be computed 

via pixel-wise multiplication between feature maps q i and k i , followed by a softmax function. Finally, the cross-modality feature can be obtained by multiplying the cross- 

modality weight with the corresponding value v i and v j . The fused cross-modality feature f 
′ 
i 

of modality i can be obtained by a summation through all the cross-modality 

features. 
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nd FLAIR modality. The enhancing tumor core region can be 

learly observed in T1c modality. Therefore, a Multimodal Feature 

usion Model (MFFM) is proposed to learn the multimodal com- 

limentary feature information, which consists of a Cross-Modality 

usion Module (CMFM) and a Multi-Scale Fusion Module (MSFM), 

hrough which the network can selectively emphasise informative 

eatures and suppress less useful ones. 

.2.1. Cross-Modality fusion module (CMFM) 

The proposed Cross-Modality Fusion Module (CMFM) is inspired 

y the recent self-attention model [38] in machine translation. 

 self-attention model computes the response at a position in 

 sequence by learning a weighted average feature representa- 

ion by considering all the positions. Convolution processes the 

nformation in a local neighbourhood which is inefficient for 

odelling long-range dependencies in images. To address this, the 

elf-attention model is adopted to enable the network to learn 

on-local structures in the image to learn more useful feature 

nformation for segmentation. Compared with the original self- 

ttention model, there are two improvements in the network: (1) 

he self-attention model is applied to exploit the cross-modal fea- 

ures in 3D feature representations, instead of the 1D sequences. 

o achieve this, the scaled dot-product attention is replaced by 

ixel-wise multiplication attention. (2) The multiplication oper- 

tion between the input tensor and weight matrices ( W q , W k , 

 v ) is replaced by the convolution operation adapting to the 3D 

eature representations. The architecture of the proposed CMFM is 

resented in Fig. 4 . 

First, each independent feature f i is forwarded to three con- 

olution blocks to obtain a series of feature maps { q i , k i , v i } , q i =
 qi ∗ f i , k i = W ki ∗ f i , v i = W v i ∗ f i , where W qi , W ki and W v i are the

onvolution weights, ∗ is the convolution operation. The cross- 

odality attention weight att i j between modality i and modality 

j can be computed via pixel-wise multiplication between q i and 

 j , followed by a softmax function to normalize the weight. 

at t i j = sof t max (q i � k j ) (1) 

here q i , k j are the feature maps of modality i and modality 

j, respectively. � is the element-wise multiplication, and att i j 
4 
s the cross-modality attention weight between modality i and 

odality j. 

Then, the cross-modality feature can be calculated between 

ross-modality attention weight att i j and the other correspond- 

ng value v j via pixel-wise multiplication. Finally, the fused cross- 

odality feature f 
′ 
i 

can be obtained by summing up all the 

ross-modality features. In this way, the network can learn cross- 

odality features, which can enhance the important features and 

lso suppress the weak ones. 

f 
′ 
i = 

n ∑ 

i, j=1 

att i j v j (2) 

here f 
′ 
i 

is the fused cross-modality feature, att i j is the cross- 

odality attention weight between modality i and modality j, it is 

oted that att ii is not the cross-modality attention weight, it is ob- 

ained from modality i . v j is the learned feature map from modal- 

ty j. 

.2.2. Multi-Scale fusion module (MSFM) 

The spatial feature information is particularly important for the 

egmentation task. In addition, different scale features can pro- 

ide different receptive fields for the network, which can capture 

ore crucial information for segmentation. To achieve this, I pro- 

ose a Multi-Scale Fusion Module (MSFM) to explore the mul- 

imodal spatial feature information. The architecture of the pro- 

osed MSFM is depicted in Fig. 5 . In the proposed MSFM, the 

ndependent features ( f 1 , f 2 , f 3 , f 4 , ..., f n ) are first concatenated

s f = [ f 1 , f 2 , f 3 , f 4 , . . . , f n ] , in this work, n = 4. Then, two convolu-

ion operations with different kernel sizes ( 1 × 1 × 1 and 3 × 3 × 3 )

re used to capture the multi-scale feature information for all 

he modalities: s a = W sa ∗ f , s b = W sb ∗ f , where W sa and W sb are

he convolution weights, and they are modality specific. Here, the 

hoice of convolution kernel size is based on the brain tumor size, 

he diameter of brain tumor is usually around 2.5 cm, and the 

mall kernel size can capture the pixel-wise features to help seg- 

entation. Following that, a sigmoid function is used to obtain the 

pace-wise weights σ (s a ) and σ (s b ) . The two space-wise weights 

(s a ) and σ (s ) are then multiplied with the input feature f
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Fig. 5. The architecture of the proposed MSFM, the concatenated feature f is first passed to two convolution layers with a sigmoid function separately to learn the space- 

wise weights. Then, these weights are multiplied with the input feature to obtain the features from different receptive fields f sa , f sb . Finally, the two features are added 

together to achieve the fused multi-scale feature f s . 

Fig. 6. The architecture of the proposed SC-LFLM. The concatenated features are first fed to a global average pooling to learn the overall feature. Then, they are passed 

through two fully connected layers with LeakyReLU. A set of correlation parameters can be obtained. Following that, the correlated feature can be obtained via correlation 

expression. In addition, correlation constraint loss is proposed to ensure the two distributions of the features is as close as possible. 
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o achieve the multi-scale features: f sa = σ (s a ) f and f sb = σ (s b ) f .

he final fused feature is obtained by summing the two multi-scale 

eatures f s = f sa + f sb . With the assistance of the proposed MSFM,

he network can learn multi-scale spatial contextual feature infor- 

ation between modalities to further improve the segmentation. 

.3. Spatial consistency-based latent feature learning module 

SC-LFLM) 

For the same patient, we can obtain different MR modalities, 

nd these MR modalities can present different characteristics for 

he same tumor regions. It is reasonable to assume that there ex- 

sts a spatial consistency between modalities, indicating there is a 

orrelation on the same tumor regions between different modal- 

ties. By investigating the joint intensities of the MR images [39] , 

e can observe a nonlinear correlation in intensity distribution be- 

ween each pair of modalities. To exploit this correlation, a Spa- 

ial Consistency-based Latent Feature Learning Module (SC-LFLM) 

s proposed. The architecture of the proposed SC-LFLM is illus- 

rated in Fig. 6 . Through the MSFM module, a multi-scale fused 

eature f s can be obtained. It is noted that f s consists of four fea-

ures: f s 1 , f s 2 , f s 3 , f s 4 , and each one represents a multi-scale fea-

ure, e.g. f s 1 represents the multi-scale feature of f 1 . First, a global 

verage pooling (GAP) followed by two fully connected layers is 

sed to map the multi-scale fused feature f s (1024 channels) to 

 set of correlation parameters for each of f s 1 , f s 2 , f s 3 , f s 4 . Here I

ake f s 1 as an example, and the correlation parameters are �1 = 

 a 1 , b 1 , c 1 , d 1 , e 1 , g 1 , h 1 } . These correlation parameters describe the

elationships between multi-modalities. Then, the correlated fea- 

ure F s 1 of modality X 1 can be achieved via a nonlinear correlation 

xpression (Equation 3 ). Finally, the Kullback–Leibler divergence- 

ased correlation constraint loss (Equation 4 ) is proposed to mea- 

ure the similarity between the estimated correlated feature and 

he original feature of modality X 1 , the lower loss will attribute 

o higher multimodal similarity. It is noticed that the abovemen- 

ioned CMFM module is proposed to learn cross-modality features. 

SFM module is proposed to learn multi-scale spatial contextual 
5 
eatures. SC-LFLM module is based on the MSFM module, however, 

t is proposed to exploit the correlation among different modal- 

ties based on the same tumor region. In addition, a correlation 

oss function is employed to encourage the network to learn latent 

orrelated features to benefit segmentation. 

 s 1 = a 1 � f 2 s 2 + b 1 � f 2 s 3 + c 1 � f 2 s 4 + d 1 � f s 2 

+ e 1 � f s 3 + g 1 � f s 4 + h 1 (3) 

here F s 1 is the correlated feature, and f s 2 , f s 3 , f s 4 are the original

eatures, and a 1 , b 1 , c 1 , d 1 , e 1 , g 1 , h 1 are the correlation parameters.

 cor 1 = P ( f s 1 ) log 
P ( f s 1 ) 

Q(F s 1 ) 
(4) 

here P ( f s 1 ) and Q(F s 1 ) are probability distributions of the original 

eature and the correlated feature from modality X 1 , and they are 

stimated during training. 

The total correlation loss function is defined as: 

 cor = L cor 1 + L cor 2 + L cor 3 + L cor 4 (5) 

here L cor 1 , L cor 2 , L cor 3 and L cor 4 are the correlation loss functions 

or modality X 1 , X 2 , X 3 and X 4 , respectively. 

.4. Multi-Task learning (MTL) 

The proposed multi-task learning consists of three tasks: im- 

ge reconstruction for available modalities, image generation for 

issing modalities, and image segmentation. The three tasks share 

he same encoders and own their task-specific decoders, which al- 

ows the individual tasks to learn a shared feature representation, 

s well as to improve the generalization of the network. In addi- 

ion, the auxiliary tasks (image reconstruction and generation) can 

mprove the performance of the target task (image segmentation). 

he architecture of the network is depicted in Fig. 7 . Specifically, 

n the encoder, each layer includes a 3 × 3 × 3 convolution with 

tride = 2 and a Res_dil block [40] except the first layer (the grey 

lock) where stride = 1 . In the decoder, each layer consists of a 3D

psampling layer, a 3 × 3 × 3 convolution and a Res_dil block. In 
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Fig. 7. The architecture of the encoder-decoder for multi-task learning, where Out put gen , Out put re and Out put seg denote the outputs of generation, reconstruction and seg- 

mentation tasks, respectively. 
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Table 1 

The parameter settings of the network. 

Parameters Value 

Layer 6 

Input size 128 × 128 × 128 

Initial filter 8 

Initial learning rate 0.0005 

Optimizer Ndame 

Batch size 1 

Training samples 285 

Segmentation labels (C) 3 

ψ 0.1 

ξ 0.1 
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1 https://ipp.cbica.upenn.edu/ 
ddition, the layers in the encoder are skip-connected and con- 

atenated with the corresponding layers in the decoder, which al- 

ows the network to recover spatial information caused by down- 

ampling and obtain the fine-grained details. 

.5. Loss function 

The training loss function is defined in Equation 6 , which con- 

ists of three terms: L seg , L 1 and L cor . L seg is the segmentation net-

ork, L 1 is the generation and reconstruction loss, and L cor is the 

atent feature learning module loss, which is presented in Equa- 

ion 5 . 

L total = L seg + ξL 1 + ψL cor (6) 

here ξ and ψ are the trade-off parameters, which are set empir- 

cally as 0.1. 

The segmentation loss function is based on the Dice loss, 

hich measures the overlap between the prediction region and the 

round truth region. 

L seg = 1 − 2 

∑ C 
i =1 

∑ N 
j=1 p i j g i j + ε

∑ C 
i =1 

∑ N 
j=1 (p i j + g i j ) + ε

(7) 

here N indicates the number of pixels in the image, C is the num- 

er of the classes, p i j ∈ [0 , 1] is the output probability of pixel i for

lass j, g i j ∈ { 0 , 1 } is the ground truth labelling of pixel i for class

j, and ε is a small constant to avoid dividing by 0. 

The generation and reconstruction loss functions are based on 

he L 1 loss, which compares the difference between the predicted 

mage and the ground-truth image. 

 1 = 

N ∑ 

i =1 

| y i − ˆ y i | (8) 

here N is the number of pixels in the image, y is the ground-

ruth image, and ˆ y is the generated image. 

. Experimental setup 

.1. Dataset and implementation details 

The proposed method is evaluated on the public multimodal 

rain tumor segmentation dataset BraTS 2018 [41] , which contains 

85 cases with ground-truth, each case has four MR modalities in- 

luding T1, FLAIR, T1c and T2. There are three segmentation labels: 

hole Tumor (WT), Tumor Core (TC) and Enhancing Tumor (ET). 

he whole Tumor consists of all tumor tissues, Tumor Core consists 
6 
f enhancing tumor, necrotic and non-enhancing tumor core. All 

he provided data have been pre-processed by organisers, includ- 

ng co-registering to the same anatomical template, interpolating 

o the same resolution ( 1 mm 

3 ) and skull-stripping. The ground- 

ruth labels have been manually labelled by experts. In this work, 

he images are resized from 155 × 240 × 240 to 128 × 128 × 128 . 

ias field correction is corrected by using the N4ITK tool. Each im- 

ge is normalized to a zero-mean, unit-variance space. 

The proposed network is implemented with Keras using a sin- 

le Nvidia Tesla V100 (32G). Nadam is used as the optimizer, the 

nitial learning rate is set as 0.0 0 05, which will be halved after 5

pochs if the validation loss is not improved. Early stopping is used 

o avoid over-fitting, where the training will stop if the validation 

oss is not improved over 10 epochs. The dataset is randomly split 

nto 80% training and 20% testing. The experimental results are ob- 

ained by submitting the local results to the online evaluation plat- 

orm 

1 . More details about the parameters are described in Table 1 . 

.2. Evaluation metrics 

.2.1. Segmentation evaluation metrics 

Two evaluation metrics are applied to calculate the segmenta- 

ion performance, including Dice Similarity Coefficient (DSC) and 

ausdorff Distance (HD), and a higher value of DSC and a lower 

alue of HD are considered as the better results. 

SC = 

2 | V p ∩ V g | 
| V p | + | V g | (9) 

here V p and V g denote the set of prediction and ground truth pix- 

ls for a given class, and | · | denote the volume of the enclosed

https://ipp.cbica.upenn.edu/
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Table 2 

Comparison results in terms of DSC between different methods on the BraTS 2018 dataset. Higher DSC values indicate better results. • denotes the included modality and ◦
denotes the missing one, bold results denote the best scores. WT, TC, and ET denote whole tumor, tumor core and enhancing tumor, respectively. AVG denotes the average 

results on the three target regions, Mean denotes the average results on one target region across all the situations. ∗ denotes the significant improvement evaluated via the 

Wilcoxon test ( p < . 05 ). 

Modality Baseline + CMFM + CMFM + MSFM + CMFM + MSFM + SC-LFLM 

F T1 T1c T2 WT TC ET AVG WT TC ET AVG WT TC ET AVG WT TC ET AVG 

◦ ◦ ◦ • 75.1 45.7 28.2 49.7 71.5 45.7 16.1 44.4 70.9 40.0 17.1 42.7 80.3 ∗ 55.6 ∗ 33.9 ∗ 56.6 

◦ ◦ • ◦ 65.2 77.2 71.8 71.4 68 . 0 ∗ 80 . 4 ∗ 74 . 2 ∗ 74.2 68.8 81.9 75.1 75.2 70.3 82.9 ∗ 74.9 76.0 

◦ • ◦ ◦ 63.0 39.4 17.9 40.1 64 . 9 ∗ 45 . 0 ∗ 12.8 40.9 69 . 3 ∗ 47.7 17.7 44.9 73.7 ∗ 57.6 ∗ 33.6 ∗ 55.0 

• ◦ ◦ ◦ 82.2 52.3 28.3 54.3 82.2 55 . 3 ∗ 24.3 53.9 83.3 56.5 27.5 55.8 84.9 ∗ 63.0 ∗ 38.5 ∗ 62.1 

◦ ◦ • • 80.2 79.8 74.3 78.1 80.2 84 . 5 ∗ 77 . 1 ∗ 80.6 78.3 84.4 77.8 80.2 81.7 ∗ 86.7 ∗ 78.2 ∗ 82.2 

◦ • • ◦ 71.9 78.2 74.6 74.9 72.8 84 . 0 ∗ 76 . 0 ∗ 77.6 73 . 9 ∗ 84.1 77.4 78.5 75.5 85.1 ∗ 76 . 8 ∗ 79.1 

• • ◦ ◦ 83.5 55.5 33.0 57.3 84.0 59 . 6 ∗ 32.3 58.6 85.2 61.0 32.7 59.6 86.4 ∗ 66.3 ∗ 42.5 ∗ 65.1 

◦ • ◦ • 78.7 49.1 31.2 53.0 77.4 53 . 2 ∗ 21.9 50.8 77 . 7 ∗ 55 . 0 ∗ 24 . 8 ∗ 52.5 82.3 ∗ 62.1 ∗ 39.4 ∗ 61.3 

• ◦ ◦ • 83.5 53.1 34.1 56.9 83.3 56 . 6 ∗ 31.6 57.2 85 . 1 ∗ 59.3 34.2 59.5 85.9 65.1 ∗ 43.7 ∗ 64.9 

• ◦ • ◦ 82.6 80.6 76.2 79.8 85 . 2 ∗ 84 . 7 ∗ 77 . 6 ∗ 82.5 84.7 84.3 78.4 82.5 85.8 ∗ 86.5 ∗ 78.9 ∗ 83.7 

• • • ◦ 83.6 81.5 76.7 80.6 85 . 2 ∗ 85 . 4 ∗ 78 . 0 ∗ 82.9 85.0 85.1 78.7 82.9 86.6 ∗ 87.1 ∗ 78.8 84.1 

• • ◦ • 84.1 55.3 35.4 58.3 84.2 58 . 1 ∗ 34.6 59.0 85 . 6 ∗ 62 . 3 ∗ 37 . 6 ∗ 61.8 86.5 67.0 ∗ 45.3 ∗ 66.3 

• ◦ • • 84.2 81.8 76.2 80.8 85 . 5 ∗ 84 . 7 ∗ 77 . 6 ∗ 82.6 85.3 84.7 78.5 82.9 86.4 ∗ 86.7 ∗ 78.8 ∗ 83.9 

◦ • • • 81.3 80.5 75.4 79.1 80.0 85 . 0 ∗ 77 . 5 ∗ 80.8 79.7 85.1 78.2 81.0 82.6 ∗ 86.8 ∗ 78.1 82.5 

• • • • 84.4 82.2 76.6 81.1 85 . 4 ∗ 85 . 2 ∗ 77 . 8 ∗ 82.8 85.1 85.1 78.6 82.9 86.5 ∗ 87.0 ∗ 78.6 84.1 

Mean 78.9 66.1 54.0 66.4 79.3 69.8 52.6 67.3 79.9 70.4 54.3 68.2 82.4 75.0 60.0 72.5 
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D = max { max 
s ∈ S 

min 

r∈ R 
d(s, r) , max 

r∈ R 
min 

s ∈ S 
d(r, s ) } (10) 

here S and R are the two sets of the surface points of the predic-

ion and the real annotation, respectively, and d is the Euclidean 

istance. 

.2.2. Generation evaluation metrics 

Three evaluation metrics are applied to calculate the generation 

erformance, including Mean Squared Error (MSE), Peak Signal-to- 

oise Ratio (PSNR) and Structural Similarity Index (SSIM). In ad- 

ition, Wilcoxon signed-rank test is applied to see the importance 

f the proposed components. If the p-value is lower than 0.05, it 

eans there are significant improvements by using the proposed 

omponents, which is denoted by ∗ in the tables. 

MSE is the simplest and most widely used quality metric, which 

easures the average of the square of the errors between gener- 

ted image and real image. It is calculated as: 

SE = 

1 

n 

n ∑ 

i =1 

(y i − ˆ y i ) 
2 

(11) 

here n is the number of pixels in the image, y and ˆ y are the

round-truth image and the generated image, respectively. 

PSNR is applied to measure the prediction accuracy in terms of 

he logarithmic decibel scale. The larger PSNR indicates that the 

eneration is of higher quality. It is defined as: 

 SNR = 10 log 10 

Max 

MSE 
(12) 

here Max is the maximum pixel value in the image. 

SSIM is a perception-based model that considers image degra- 

ation as perceived change in structural information. The larger 

SIM indicates that the generation is of higher quality. It is com- 

uted as: 

SIM = 

( 2 μ ˆ y μy + c 1 )( 2 σy ̂ y + c 2 ) 

(μ ˆ y 
2 + μ2 

y + c 1 )( σ ˆ y 
2 + σ 2 

y + c 2 ) 
(13) 

here μy and σ 2 
y are the mean and variance of the ground-truth 

mage y , μ ˆ y and σ 2 
ˆ y 

are the mean and variance of the generated 

mage ˆ y , and σy ̂ y is the covariance between the ground-truth image 
7 
 and the generated image ˆ y . c 1 and c 2 are to stabilize the division

ith weak denominator. 

. Experiment results and analysis 

.1. Ablation experiments 

To analyze the effectiveness of the proposed strategies, the ab- 

ation experiments are conducted based on a baseline method. The 

aseline is the proposed method without using CMFM, MSFM and 

C-LFLM. From Table 2 , first, it can be observed that an additional 

nput modality can result in statistically significant improvements. 

n addition, the proposed CMFM can improve the baseline by 1.4% 

n terms of average DSC, especially when only T1c modality is 

vailable, a 3.9% improvement in terms of average DSC can be ob- 

erved. It can be explained that the CMFM can capture the cross- 

odality feature information to help tumor segmentation. By com- 

aring “Baseline” and “Baseline + CMFM + MSFM”, it can be ob- 

erved that the segmentation accuracy is further boosted with a 

.7% improvement in terms of average DSC. Because the MSFM can 

urther improve the feature learning ability of the model by con- 

idering the multi-scale feature information. When the SC-LFLM 

s integrated, the method can obtain a 9.2% performance gain in 

erms of average DSC compared with the baseline method. A sig- 

ificant increase of 37.2% in terms of average DSC can be observed 

ompared with the baseline method when only the T1 modality 

xists. It demonstrates that the proposed latent feature learning 

odule can extract important feature information to aid brain tu- 

or segmentation. The Wilcoxon test results also show that the 

roposed method can achieve significantly better accuracy than 

ther compared methods. 

Besides, I also study the segmentation accuracy in terms of HD 

n Table 3 , from which it can be observed that the proposed CMFM, 

SFM and SC-LFLM can obtain improvements of 4.7%, 16.8%, and 

4.6% in terms of average HD compared with the baseline, respec- 

ively. More encouragingly, the significant improvements (denoted 

y ∗) can be observed via the Wilcoxon test, which further reveals 

he advantage of the proposed strategies. 

.2. Comparison with single-Task learning (STL) and dual-Task 

earning (DTL) 

Then, to validate the effectiveness of the proposed MTL (Multi- 

ask Learning), I compare it with STL (Single-Task Learning), where 
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Table 3 

Comparison results in terms of HD between different methods on BraTS 2018 dataset. Lower HD values indicate better results. • denotes the included modality and 

◦ denotes the missing one, bold results denote the best scores. WT, TC, and ET denote whole tumor, tumor core and enhancing tumor, respectively. AVG denotes the 

average results on the three target regions, Mean denotes the average results on one target region across all the situations. ∗ denotes the significant improvement 

evaluated via the Wilcoxon test ( p < . 05 ). 

Modality Baseline Baseline + CMFM Baseline + CMFM + MSFM Baseline + CMFM + MSFM + SC-LFLM 

F T1 T1c T2 WT TC ET AVG WT TC ET AVG WT TC ET AVG WT TC ET AVG 

◦ ◦ ◦ • 13.9 19.9 18.7 17.5 22.5 24.2 22.2 23.0 14 . 0 ∗ 18.9 18.0 17.0 7.7 ∗ 12.7 ∗ 11.6 ∗ 10.7 

◦ ◦ • ◦ 13.9 9.3 7.1 10.1 13.7 11.2 7.4 10.7 13 . 1 ∗ 7.2 5.6 8.6 10.1 6.8 5.5 7.5 

◦ • ◦ ◦ 19.1 26.0 23.0 22.7 16.7 17.4 18.4 17.5 13 . 1 ∗ 17.6 16 . 3 ∗ 15.6 10.0 ∗ 15.4 14.1 13.2 

• ◦ ◦ ◦ 9.1 15.9 13.6 12.9 9.7 16.1 14.1 13.3 9 . 5 ∗ 13.9 12.6 12.0 5.2 11.8 10.9 9.3 

◦ ◦ • • 8.9 8.0 6.2 7.7 7.9 4.8 3.4 5.4 8.9 5.1 3.8 6.0 6.5 ∗ 4.0 ∗ 2.8 ∗ 4.4 

◦ • • ◦ 10.9 8.9 5.7 8.5 11.3 6.0 3.9 7.1 9.6 5.5 4.3 6.4 8.4 5.6 4.3 6.1 

• • ◦ ◦ 7.4 13.7 12.5 11.2 8.2 13.5 12.2 11.3 7.6 12 . 9 ∗ 11 . 5 ∗ 10.6 5.8 10.8 10.9 9.2 

◦ • ◦ • 10.6 18.7 16.6 15.3 13.5 15.6 14.3 14.5 10.0 15.2 14.1 13.1 6.4 ∗ 11.6 11.3 9.8 

• ◦ ◦ • 6.7 16.0 15.0 12.5 9.4 16.1 14.6 13.4 7.4 11 . 6 ∗ 10 . 0 ∗ 9.7 4.9 11.4 9.9 8.7 

• ◦ • ◦ 7.3 5.4 3.9 5.5 6.5 4.8 3.4 4.9 6.9 4.4 3.0 4.8 5.6 ∗ 3.9 ∗ 2.5 4.0 

• • • ◦ 6.4 5.5 3.8 5.2 6.7 4.5 3.0 4.7 6 . 2 ∗ 4.6 3.1 4.7 5.3 ∗ 3.5 ∗ 2.4 3.7 

• • ◦ • 6.7 15.3 14.2 12.0 7.7 13.4 12.5 11.2 6.8 12 . 1 ∗ 10 . 7 ∗ 9.9 4.6 9.6 9.2 7.8 

• ◦ • • 6.3 6.9 5.4 6.2 5.8 4.9 3.2 4.6 6.1 4 . 5 ∗ 3 . 0 ∗ 4.5 4.5 ∗ 3.6 ∗ 2.5 ∗ 3.5 

◦ • • • 8.5 8.0 5.8 7.4 9.3 5 . 9 ∗ 4 . 6 ∗ 6.6 8.4 4.8 3.4 5.5 6.2 ∗ 4.1 ∗ 2.8 ∗ 4.4 

• • • • 6.6 7.0 5.7 6.4 5.8 4.7 3.0 4.5 6.2 4.7 3.1 4.7 4.6 ∗ 3.5 ∗ 2.3 ∗ 3.5 

Mean 9.5 12.3 10.5 10.7 10.3 10.9 9.3 10.2 8.9 9.5 8.2 8.9 6.4 7.9 6.9 7.0 

Table 4 

Comparison results among STL, DTL and MTL in terms of DSC on BraTS 2018 dataset. • denotes the included modality and ◦ denotes the missing one, bold results denote the 

best scores. WT, TC, and ET denote whole tumor, tumor core and enhancing tumor, respectively. AVG denotes the average results on the three target regions, Mean denotes 

the average results on one target region across all the situations. ∗ denotes the significant improvement evaluated via the Wilcoxon test ( p < . 05 ). 

Modality STL DTL (reconstruction) DTL (generation) MTL 

F T1 T1c T2 WT TC ET AVG WT TC ET AVG WT TC ET AVG WT TC ET AVG 

◦ ◦ ◦ • 78.2 51.1 20.6 50.0 79.1 51.1 31.0 53.7 79.2 53.7 31.3 54.7 80.3 55.6 ∗ 33.9 ∗ 56.6 

◦ ◦ • ◦ 70.7 84.1 76.8 77.2 69.1 82.6 74.3 75.3 69.3 82.9 74.9 75.7 70.3 82.9 74.9 76.0 

◦ • ◦ ◦ 69.7 49.9 17.3 45.6 72.0 54 . 1 ∗ 30 . 9 ∗ 52.3 72.1 54 . 0 ∗ 30 . 2 ∗ 52.1 73.7 ∗ 57.6 ∗ 33.6 ∗ 55.0 

• ◦ ◦ ◦ 84.6 63.1 27.5 58.4 84.0 60.3 34.9 59.7 84.0 61.0 35.8 60.3 84.9 63.0 38.5 62.1 

◦ ◦ • • 80.1 85.4 77.6 81.0 80.7 86.7 ∗ 78 . 3 ∗ 81.9 81 . 5 ∗ 86 . 5 ∗ 78.4 ∗ 82.1 81.7 ∗ 86.7 ∗ 78 . 2 ∗ 82.2 

◦ • • ◦ 74.1 85.7 77.7 79.2 74.2 85.4 77.2 78.9 75.4 85.5 77.2 79.4 75.5 85.1 76.8 79.1 

• • ◦ ◦ 85.9 67.1 35.7 62.9 86.2 64.6 40.2 63.7 86.4 64.3 40.2 63.6 86.4 66.3 42.5 65.1 

◦ • ◦ • 81.3 59.8 29.8 57.0 81.6 59.2 37.6 59.5 81.9 58.8 35.8 58.8 82.3 62.1 39.4 61.3 

• ◦ ◦ • 86.0 65.0 34.9 62.0 85.3 62.6 41.5 63.1 85.4 63.7 41.6 63.6 85.9 65.1 43.7 64.9 

• ◦ • ◦ 85.1 86.3 78.3 83.2 85.7 85.9 78.7 83.4 86.0 ∗ 86.0 78.7 83.6 85 . 8 ∗ 86.5 78.9 83.7 

• • • ◦ 85.3 86.4 77.9 83.2 86.4 86.9 78.8 84.0 86.7 ∗ 86.7 78.7 84.0 86 . 6 ∗ 87.1 78.8 84.1 

• • ◦ • 86.3 67.3 39.7 64.4 86.3 65.3 43.5 65.0 86.3 65.5 42.9 64.9 86.5 67.0 45.3 66.3 

• ◦ • • 85.9 86.0 77.8 83.2 86.1 86.5 78.6 83.7 86.4 ∗ 86.1 78.6 83.7 86.4 ∗ 86.7 78.8 83.9 

◦ • • • 81.0 85.9 77.4 81.5 81.7 86.9 78.2 82.3 82 . 4 ∗ 86.8 78.1 82.4 82.6 ∗ 86.8 78.1 82.5 

• • • • 85.9 86.0 77.6 83.2 86 . 3 ∗ 86.9 78.7 84.0 86.6 ∗ 86.8 78.6 84.0 86 . 5 ∗ 87.0 78.6 84.1 

Mean 81.3 73.9 55.1 70.1 81.6 73.7 58.8 71.4 82.0 73.9 58.7 71.5 82.4 75.0 60.0 72.5 
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nly the target segmentation task is applied, and DTL (Dual-Task 

earning), where both target segmentation task and reconstruc- 

ion/generation task are applied. The comparison results are pre- 

ented in Table 4 and Table 5 . It can be observed that, with the

ssistance of the reconstruction task, the segmentation result of 

TL is improved by 1.9% in terms of average DSC. In addition, the 

eneration task can improve STL by 2.0% in terms of average DSC. 

owever, there is a slight decrease in terms of average HD on both 

TL tasks. Finally, when both reconstruction and generation tasks 

re applied to the segmentation task, an improvement of 3.4% in 

erms of average DSC and 6.7% in terms of average HD can be 

bserved. It can be explained that the multiple tasks can help to 

earn more valuable feature information, and also provide some su- 

ervision to the target task, leading to better segmentation results. 

herefore, the comparison results in Table 4 and Table 5 demon- 

trate the effectiveness of integrating additional tasks into the tar- 

et task. However, regarding to the computational cost, the STL use 

00M around trainable parameters, and the MTL use 142M around 

rainable parameters. The two auxiliary tasks take 42% more train- 

ng parameters than STL. In future work, I will consider improving 

he network architecture to decrease trainable parameters and re- 

uce computational costs. 
8 
.3. Comparison with the state-of-the-art segmentation methods 

I also compare the proposed method with several state-of-the- 

rt methods, which have been introduced in Section 2 as well as 

ith the U-HVED method from [23] . The comparison results are re- 

orted in Table 6 , and the results on HeMIS and U-HeMIS are cited 

rom the work [23] . From Table 6 , it can be observed that the U-

et-based method (U-HeMIS) can achieve better results than the 

NN-based network (HeMIS). Second, fusing multi-modalities by 

ariational Auto-Encoder (VAE) (U-HVED) can further improve the 

egmentation accuracy than simply calculating the mean and vari- 

nce from the independent features (U-HeMIS). In addition, com- 

ared with the current best method [23] (U-HVED), the proposed 

ethod can obtain 12.1% improvement in terms of average DSC, 

hich indicates the proposed spatial consistency-based latent fea- 

ure learning can further learn the informative features than VAE, 

nd it attributes to better segmentation results. 

.4. Evaluation of the generation results 

Finally, in order to demonstrate that the proposed method 

an provide good generation results, I evaluate the generation 
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Table 5 

Comparison results among STL, DTL and MTL in terms of HD on BraTS 2018 dataset. • denotes the included modality and ◦ denotes the missing one, bold results denote the 

best scores. WT, TC, and ET denote whole tumor, tumor core and enhancing tumor, respectively. AVG denotes the average results on the three target regions, Mean denotes 

the average results on one target region across all the situations. ∗ denotes the significant improvement evaluated via the Wilcoxon test ( p < . 05 ). 

Modality STL DTL (reconstruction) DTL (generation) MTL 

F T1 T1c T2 WT TC ET AVG WT TC ET AVG WT TC ET AVG WT TC ET AVG 

◦ ◦ ◦ • 9.7 13.8 13.6 12.4 8.9 13.7 12.7 11.8 9.2 13.3 12.2 11.6 7.7 ∗ 12.7 11.6 10.7 

◦ ◦ • ◦ 10.0 5.2 4.0 6.4 12.1 9.0 7.7 9.6 12.4 8.0 6.7 9.0 10.1 6.8 5.5 7.5 

◦ • ◦ ◦ 14.8 17.0 16.1 16.0 10 . 9 ∗ 14.8 13.5 13.1 10 . 9 ∗ 15.1 13.8 13.3 10.0 ∗ 15.4 14.1 13.2 

• ◦ ◦ ◦ 6.8 10.7 10.3 9.3 6.9 15.2 13.7 11.9 6.8 14.5 13.3 11.5 5.2 ∗ 11.8 10.9 9.3 

◦ ◦ • • 7.0 4.5 3.2 4.9 6.7 4.4 3.0 4.7 6.7 4.4 3.2 4.8 6.5 ∗ 4.0 2.8 4.4 

◦ • • ◦ 9.2 4.8 3.6 5.9 8.4 5.1 3.6 5.7 8.4 5.2 3.8 5.8 8.4 5.6 4.3 6.1 

• • ◦ ◦ 6.2 9.7 8.8 8.2 6.0 11.0 11.1 9.4 5.9 11.7 11.2 9.6 5.8 10.8 10.9 9.2 

◦ • ◦ • 7.3 12.0 10.8 10.0 8.5 12.5 10.9 10.6 8.0 12.3 12.2 10.8 6.4 ∗ 11.6 11.3 9.8 

• ◦ ◦ • 6.2 9.9 9.0 8.4 6.3 13.5 12.2 10.7 6.1 13.2 10.9 10.1 4.9 11.4 9.9 8.7 

• ◦ • ◦ 7.2 4.0 2.9 4.7 6.0 4.5 2.7 4.4 5 . 7 ∗ 3.8 2.5 4.0 5.6 ∗ 3.9 2.5 4.0 

• • • ◦ 6.3 4.0 2.9 4.4 4 . 7 ∗ 3.6 2.5 3.6 4.6 ∗ 3.7 2.4 3.6 5 . 3 ∗ 3.5 2.4 3.7 

• • ◦ • 6.3 9.1 8.4 7.9 5.0 10.6 10.5 8.7 5.0 10.1 10.7 8.6 4.6 9.6 9.2 7.8 

• ◦ • • 5.4 4.0 2.9 4.1 4 . 8 ∗ 4.0 2.9 3.9 4 . 7 ∗ 4.1 2.8 3.9 4.5 ∗ 3.6 2.5 3.5 

◦ • • • 8.0 4.5 3.3 5.3 7 . 0 ∗ 4.7 2.8 4.8 6.6 4.2 2.9 4.6 6.2 ∗ 4.1 2.8 4.4 

• • • • 5.5 4.1 2.9 4.2 4 . 7 ∗ 3.9 2.4 3.7 4 . 7 ∗ 4.3 2.8 3.9 4.6 ∗ 3.5 2.3 3.5 

Mean 7.7 7.8 6.8 7.5 7.1 8.7 7.5 7.8 7.0 8.5 7.4 7.7 6.4 7.9 6.9 7.0 

Table 6 

Comparison of different methods in terms of DSC on BraTS 2018 dataset. • denotes the included modality and ◦ denotes the missing one, bold results denote the best scores. 

WT, TC, and ET denote whole tumor, tumor core and enhancing tumor, respectively. AVG denotes the average results on the three target regions, Mean denotes the average 

results on one target region across all the situations. 

Modality HeMIS [20] U-HeMIS [23] URN [21] U-HVED [23] Ours 

F T1 T1c T2 WT TC ET AVG WT TC ET AVG WT TC ET AVG WT TC ET AVG WT TC ET AVG 

◦ ◦ ◦ • 38.6 19.5 0.0 19.4 79.2 50.0 23.3 50.8 77.5 43.6 20.3 47.1 80.9 54.1 30.8 55.3 80.3 55.6 33.9 56.6 

◦ ◦ • ◦ 2.6 6.5 11.1 6.7 58.5 58.5 60.8 59.3 62.2 58.5 55.8 58.8 62.4 66.7 65.5 64.9 70.3 82.9 74.9 76.0 

◦ • ◦ ◦ 0.0 0.0 0.0 0.0 54.3 37.9 12.4 34.9 50.4 34.2 19.1 34.6 52.4 37.2 13.7 34.4 73.7 57.6 33.6 55.0 

• ◦ ◦ ◦ 55.2 16.2 6.6 26.0 79.9 49.8 24.9 51.5 84.8 50.4 23.6 52.9 82.1 50.4 24.8 52.4 84.9 63.0 38.5 62.1 

◦ ◦ • • 48.2 45.8 55.8 49.9 81.0 69.1 68.6 72.9 80.3 68.9 67.6 72.3 82.7 73.7 70.2 75.5 81.7 86.7 78.2 82.2 

◦ • • ◦ 15.4 30.4 42.6 29.5 63.8 64.0 65.3 64.4 69.8 65.9 66.5 67.4 66.8 69.7 67.0 67.8 75.5 85.1 76.8 79.1 

• • ◦ ◦ 71.1 11.9 1.2 28.1 83.9 56.7 29.0 56.5 85.5 52.6 25.3 54.5 84.3 55.3 24.2 54.6 86.4 66.3 42.5 65.1 

◦ • ◦ • 47.3 17.2 0.6 21.7 80.8 53.4 28.3 54.2 80.8 48.6 25.2 51.5 82.2 57.2 30.7 56.7 82.3 62.1 39.4 61.3 

• ◦ ◦ • 74.8 17.7 0.8 31.1 86.0 58.7 28.0 57.6 86.3 50.7 25.2 54.1 87.5 59.7 34.6 60.6 85.9 65.1 43.7 64.9 

• ◦ • ◦ 68.4 41.4 53.8 54.5 83.3 67.6 68.0 73.0 85.8 72.5 70.4 76.2 85.8 72.9 70.3 76.2 85.8 86.5 78.9 83.7 

• • • ◦ 70.2 48.8 60.9 60.0 85.1 70.7 69.9 75.2 85.6 72.0 71.0 76.2 86.2 74.2 71.1 77.2 86.6 87.1 78.8 84.1 

• • ◦ • 75.2 18.7 1.0 31.6 87.0 61.0 33.4 60.5 86.1 52.5 25.8 54.8 88.0 61.5 34.1 61.2 86.5 67.0 45.3 66.3 

• ◦ • • 75.6 54.9 60.5 63.7 87.0 72.2 69.7 76.3 86.5 72.2 69.8 76.2 88.6 75.6 71.2 78.5 86.4 86.7 78.8 83.9 

◦ • • • 44.2 46.6 55.1 48.6 82.1 70.7 69.7 74.2 81.1 69.5 68.5 73.0 83.3 75.3 71.1 76.6 82.6 86.8 78.1 82.5 

• • • • 73.8 55.3 61.1 63.4 87.6 73.4 70.8 77.3 86.3 71.8 69.9 76.0 88.8 76.4 71.7 79.0 86.5 87.0 78.6 84.1 

Average 50.7 28.7 27.4 28.1 78.6 59.7 48.1 62.1 79.3 58.9 46.9 61.7 80.1 64.0 50.0 64.7 82.4 75.0 60.0 72.5 
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erformance of the proposed method using three evaluation met- 

ics: MSE, PSNR and SSIM. The comparison results are presented 

n Table 7 . Overall, it can be observed the proposed network can 

btain a stable generation performance no matter if any number 

f modalities are missing. For the Flair modality, the average 

eneration accuracy is 0.033, 0.85 and 28.34 in terms of MSE, 

SIM and PSNR, respectively, across all the missing situations; For 

he T1 modality, the average generation accuracy is 0.027, 0.86 

nd 25.62 in terms of MSE, SSIM and PSNR, respectively; For T1c 

odality, the average generation accuracy is 0.017, 0.86 and 32.15 

n terms of MSE, SSIM and PSNR, respectively; For T2 modality, 

he average generation accuracy is 0.11, 0.80 and 22.98 in terms 

f MSE, SSIM and PSNR, respectively. The experimental results 

ndicate that the proposed method can achieve good generation 

erformance to help to recover the missing modalities. In addition, 

omparing the generation accuracy among the four modalities, it 

an be observed that the generation accuracy of Flair, T1 and T1c 

odalities is better than T2 modality. I explain that the timing 

f radiofrequency pulse sequences makes T2 modality different 

rom other three modalities, for example, as is shown in Fig. 1 , 

erebrospinal Fluid (CSF) is bright on T2 modality and dark on 

lair, T1 and T1c modalities. Therefore, the generation accuracy of 

2 modality is not better than the others. 
9 
.5. Visualization of the segmentation and generation results 

I also visualize the segmentation and generation results of 

he proposed method in Fig. 8 . On the one hand, from the seg- 

entation result, firstly, it can be observed that when only the 

LAIR modality is available, it can detect most parts of brain 

umor regions, indicating the important role of the FLAIR modality 

mong these four MRI modalities. Secondly, when the T1c modal- 

ty is integrated, the network can achieve good results. Significant 

mprovements in DSC can be seen on both tumor core (+28.9%) 

nd enhancing tumor (+99.5%) regions. Lastly, the T2 modality can 

urther refine the results. On the other hand, from the generation 

esults, it can be observed when only the FLAIR modality is 

vailable, it can obtain good generation results for both T1 and T2 

odalities. When the T1c modality is included as the input (3rd 

nd 4th row), the generated T1 and T2 modality can further high- 

ight the tumor core region, resulting from the shared encoders 

ith the segmentation network. In turn, the highlighted tumor 

egions can also boost the segmentation network to achieve better 

esults. 

From Fig. 9 , in each row, it can be observed that with the 

elp of the proposed strategies, the segmentation results can be 

radually refined. In each column, with the increasing number 
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Table 7 

Generation results of the proposed method evaluated by MSE, SSIM and PSNR on BraTS 2018 dataset. • denotes the included modality and ◦ denotes the missing one. The 

colours distinguish the generation results of different modalities. 

Modality Generation Evaluation Metrics 

F T1 T1c T2 MSE ↓ SSIM ↑ PSNR ↑ 
◦ ◦ ◦ • F: 0.048 T1: 0.03 T1c: 0.02 F: 0.83 T1: 0.85 T1c: 0.85 F: 26.62 T1: 25.65 T1c: 30.02 

◦ ◦ • ◦ F: 0.028 T1: 0.025 T2: 0.097 F: 0.84 T1: 0.86 T2: 0.80 F: 28.37 T1: 27.33 T2: 22.78 

◦ • ◦ ◦ F: 0.029 T1c: 0.019 T2: 0.12 F: 0.86 T1c: 0.87 T2: 0.80 F: 29.11 T1c: 31.16 T2: 22.96 

• ◦ ◦ ◦ T1: 0.034 T1c: 0.027 T2: 0.12 T1: 0.84 T1c: 0.84 T2: 0.80 T1: 24.99 T1c: 29.89 T2: 22.32 

◦ ◦ • • F: 0.038 T1: 0.025 F: 0.84 T1: 0.87 F: 27.75 T1: 21.55 

◦ • • ◦ F: 0.025 T2: 0.097 F: 0.89 T2: 0.81 F: 29.46 T2: 23.25 

• • ◦ ◦ T1c: 0.018 T2: 0.11 T1c: 0.86 T2: 0.80 T1c: 39.0 T2: 23.1 

◦ • ◦ • F: 0.034 T1c: 0.014 F: 0.84 T1c: 0.88 F: 28.38 T1c: 31.84 

• ◦ ◦ • T1: 0.026 T1c: 0.016 T1: 0.86 T1c: 0.86 T1: 26.16 T1c: 31.15 

• ◦ • ◦ T1: 0.026 T2: 0.11 T1: 0.85 T2: 0.80 T1: 26.47 T2: 23.13 

• • • ◦ T2: 0.10 T2: 0.80 T2: 23.32 

• • ◦ • T1c: 0.01 T1c: 0.88 T1c: 32.0 

• ◦ • • T1: 0.024 T1: 0.86 T1: 27.21 

◦ • • • F: 0.032 F: 0.84 F: 28.69 

Fig. 8. The visualization of the segmentation and generation results of the proposed method. The first row presents the input modalities and the segmentation ground-truth. 

The next three rows present the generation and segmentation results in different missing modality situations. The last row presents the full modalities situation. DSC is 

denoted for each example. 
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f modalities, the segmentation results are improved progres- 

ively. Especially, from the second and third rows, it can be seen 

hat integrating the T1c modality can significantly improve the 

egmentation results on both tumor core and enhancing tumor 

egions. This is consistent with the observation in Fig. 8 , where 

he T1c modality is more sensitive to tumor core and enhancing 

umor regions. To summarize, the visualization results show that 

he proposed method is able to achieve competitive segmentation 
10 
hen modalities are missing and can also generate the missing 

odalities at the same time. 

.6. Visualization of the feature maps 

To further demonstrate the effectiveness of the proposed strate- 

ies, I visualize for various subsets of the strategies the feature 

aps extracted from the second-to-last layer in the segmenta- 
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Fig. 9. The visualization of the segmentation results between different methods. The first row presents the input modalities and the segmentation ground-truth. The last 

four rows present the segmentation results in different missing modality situations between different methods. (1) Baseline, (2) + CMFM, (3) + CMFM + MSFM, (4) + CMFM 

+ MSFM + SC-LFLM, DSC on the whole tumor, tumor core and enhancing tumor regions are denoted under each example. The green circle highlights the segmentation 

differences along columns. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. The visualization of the feature maps between different methods. 

11 
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ion decoder. From Fig. 10 , it can be observed that with the help

f the proposed strategies, the interested tumor regions become 

ore obvious in the feature maps. Specifically, from the second 

nd third columns, it can be observed employing the multi-scale 

eature information can significantly highlight the target tumor 

egions, especially for the edema region, aiding the network to 

earn more discriminative features for segmentation. Furthermore, 

ased on the spatial consistency of multi-modalities, considering 

he latent relationships between different modalities can further 

btain better feature information. Therefore, the comparison re- 

ults in Fig. 10 demonstrate the effectiveness of the proposed 

ethod. 

. Discussion and conclusion 

In this work, I proposed a novel multimodal feature fusion and 

atent feature learning guided deep neural network for brain tu- 

or segmentation and missing modality recovery. Considering that 

he multi-modalities can provide complementary information for 

rain tumor segmentation, I propose to enhance the feature learn- 

ng ability by introducing a multimodal feature fusion model, con- 

isting of a cross-modality fusion module and a multi-scale fu- 

ion module. The cross-modality fusion module adopts the self- 

ttention mechanism to learn non-local structures in the image. 

he multi-scale fusion module is proposed to capture multimodal 

patial contextual feature information. Thanks to the two modules, 

he network can learn more rich features across multi-modalities. 

n addition, since the same tumor regions can be observed by dif- 

erent MR modalities, there is a spatial consistency between multi- 

odalities for the same patient. To this end, I proposed a spa- 

ial consistency-based latent feature learning module to learn the 

atent multimodal correlation, and also extract the relevant fea- 

ures to help segmentation. Furthermore, to compensate for the 

ncomplete set of modalities, I propose to use multi-task learn- 

ng to retrieve the missing modalities. Three generation evaluation 

etrics including MSE, PSNR and SSIM proved that the proposed 

etwork can achieve a stable generation performance with any 

umber of missing modalities. Comprehensive experiments evalu- 

ted on BraTS 2018 dataset demonstrate that the proposed method 

an achieve superior segmentation results than the state-of-the-art 

ethods. The proposed method is evaluated on BraTS 2018 dataset, 

hile it can be generalized to other multimodal datasets. Besides, 

he proposed components such as the multimodal feature fusion 

odel can be easily adapted to other neural network architectures 

nd research fields. 

However, there are some limitations in the work that inspire 

uture directions. First, an encoder-decoder-based network is used 

or image generation, the potential future direction is to improve 

he generator architecture. For example, a Generative Adversarial 

etwork (GAN) can be considered to generate high-quality images, 

s well as to further enhance segmentation accuracy. Second, the 

ulti-task learning architecture can be improved to reduce train- 

ng parameters and computational costs. Finally, other approaches 

o explore latent feature representations can be further investi- 

ated to improve the results. 
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