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A B S T R A C T

The limitations of classical node centralities such as degree, closeness, betweenness and eigenvector are rooted
in the network topology structure. For a deeper understanding, we regulate the basic network topology
structure clustering and assortative coefficient to study the effect on these four classical node centralities.
To observe the structural diversity of the complex network, we firstly construct two types of the growing
scale-free networks with tunable clustering coefficient and assortative coefficient respectively, and simulate
three types of null models on ten real networks to adjust cluster and assortativity. The results indicate that
the impact of varying cluster and assortativity on node centrality in complex networks is obvious. We should
pay more attention to the network topology when selecting node centralities as identifying the significance or
influence of nodes in complex networks.
1. Introduction

Node centrality has some serious flaws [1,2]. In particular, we
show that, depending on the network structure. The classical centrality
includes the degree centrality as the number of neighbors a node
connects with, the closeness centrality [3] as the reciprocal of the sum
of the geodesic distances to all other nodes, betweenness centrality [4]
as the number of shortest paths through a certain node, and the
eigenvector centrality [5] as the component of the eigenvector to the
largest eigenvalue of the adjacency matrix. Lately, a lot of works try
to design efficient algorithms that outperform the classical centrality
methods. Some algorithms focus on directly modifying or extending
the basic centrality measures including degree [6–8], closeness [9], and
betweenness [10,11]. Some others try to cut down the computational
complexity of eigenvector [12,13]. Node centralities are well-known
methods for quantifying the influence of nodes, as well as ranking
nodes in complex networks [14–16]. For instance, we can hinder
spreading in the case of diseases or accelerate spreading in the case of
information dissemination. The above classical or extended centralities
could manifest different spreader topology in a network, which leads
to different efficacy and applicability for ranking the influence of the
spreaders. The centrality method will generate a ranking list for nodes.
In principle, the ranking from an effective ranking method should be
as close as possible to the ranking based on the real spreading process.
Node centrality measurements are based on characterizing the network
topology structure in a certain perspective. Changing the network
topology structure would affect the accuracy of the node centrality.

∗ Corresponding author.
E-mail address: zhuoming.ren@hznu.edu.cn (Z.-M. Ren).

To be known as a hot research field of complex networks, the
identification of node influence is of great theoretical and practical
importance, but we usually neglect the impact of varying network
structure. Network structure often affects the functions of nodes such as
spreading, reputation, synchronization, and controllability [17]. There
are many studies focusing on the impact of some network structure
on the function of nodes. For example, the analysis of influence and
susceptibility together with network structure reveals that influen-
tial individuals are less susceptible to influence than non-influential
individuals and that they cluster in the network while susceptible
individuals do not [18]. The contribution of a node to the spreading
behavior is not uniquely determined by the structure of the system
but it is a result of the interplay between dynamics and network struc-
ture [19]. Statistical analysis also shows that social networks typically
show a high clustering, or local transitivity [20]: If person A knows B
and C, then B and C are likely to know each other. The behavior spread
farther and faster across clustered-lattice networks than across corre-
sponding random networks [21]. Social messages have more impact
than informational messages and ‘weak ties’ are much less likely than
‘strong ties’ to spread behavior via the social network [22]. In addition,
the assortativity which is also a standard tool for analyzing network
structure and has a simple interpretation [23,24]. Assortativity 𝑟 ranges
from −1 (i.e. disassortativity) to 1 (i.e. assortativity). If 𝑟 > 0, high
degree nodes tend to connect to other high degree nodes. Otherwise,
high degree nodes tend to connect to low degree nodes. In practical
vailable online 22 November 2022
960-0779/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.chaos.2022.112880
Received 15 January 2022; Received in revised form 28 October 2022; Accepted 3
 November 2022

http://www.elsevier.com/locate/chaos
http://www.elsevier.com/locate/chaos
mailto:zhuoming.ren@hznu.edu.cn
https://doi.org/10.1016/j.chaos.2022.112880
https://doi.org/10.1016/j.chaos.2022.112880
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2022.112880&domain=pdf


Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 166 (2023) 112880X.-Z. Wen et al.

w

𝑘

I
s
d
c
r

𝑐

w
𝑖
t
d
a
n
t
c
b
t
n

𝑏

𝑒

w
t

𝐴

C
t

2

c
s
o
a
m
a
l
m
p
1
(
s
b
b
t
f
e

3

3

s
t
w
f
n
c
c
t
a
t
n
e
𝑃

application scenarios, mostly complex networks extracted from society,
biology, information, technology appear a very diverse range of struc-
ture topology. We can give an evidence of ten real networks in Table 1
of the context. Table 1 shows that the number of nodes ranges from
dozens to tens of thousands, the edges range from tens to hundreds of
thousands, assortativity from negative to positive, cluster are from 0 to
0.6. Some of network models can also generate the growing scale-free
networks such as with tunable clustering or with tunable assortative
coefficient. Furthermore, the null models by randomizing real networks
could fix some of the structural properties including clustering and
assortative coefficient to the values observed in original networks,
many other properties appear as statistical consequences of these fixed
observables [25,26].

In order to fill in the blanks, we will focus on the impact of varying
cluster and assortativity on the four classical node centralities. For a
deeper understanding, the Gini index, the coefficient of variation and
correlation are used to investigate the four classical node centralities
when we regulate the basic network topology structure clustering and
assortative coefficient. We firstly construct a lot of growing scale-free
networks with tunable clustering and assortative coefficient, then ten
real networks are independently randomized by three types of null
models to observed impact of varying topology on node centrality
in complex networks. The randomization methodology can assess the
significance of the structural property in complex networks [27]. For
example, Ren et al. proposed a time-respecting null model that pre-
served both the network’s degree sequence and the time evolution
of individual nodes’ degree values [28]. This null model is able to
factor out the effect of the system’s temporal patterns on its structure.
Furthermore, the null models of real networks play a critical role
in many research fields such as the detection of communities [29],
network motifs [30], network superfamilies [31], assortativity [32] or
revising assortativity [33].

2. Methods and materials

2.1. Node centrality

We first describe four well-known centralities considered in this
paper. Normally, an undirected network 𝐺 = (𝑉 ,𝐸) with 𝑛 = |𝑉 |

nodes and 𝑒 = |𝐸| links could be represented by an adjacent matrix
𝛺 = {𝑎𝑖𝑗} ∈ 𝑅𝑛,𝑛, where 𝑎𝑖𝑗 = 1(𝑖 ≠ 𝑗) if node 𝑖 and node 𝑗 are
connected, and 𝑎𝑖𝑗 = 0 otherwise. Degree centrality is the simplest one,

hich is defined as the number of connections of a node.

𝑐(𝑖) =
∑

𝑗=1
𝑎𝑖𝑗 . (1)

t is reasonable to assume the nodes with many connections have
tronger influence than those with few connections. In most cases, the
egree is a powerful index for ranking nodes’ influence for its low
omputational cost. Closeness centrality [3] of node 𝑖 is defined as the
eciprocal of the sum of the geodesic distances to all other nodes,

𝑐(𝑖) = 𝑁 − 1
∑

𝑖≠𝑗 𝑑𝑖𝑗
, (2)

here 𝑁 is the number of nodes, and 𝑑𝑖𝑗 is the geodesic distances from
to 𝑗. Nodes with high closeness have short distances to others, and

hus generally more influential in spreading. In the case of information
iffusion, people usually consider individuals with high closeness value
s being well-positioned to obtain novel information early. Likewise,
odes with high closeness value in a epidemic network are positioned
o infect others easily. Betweenness centrality [4] is defined as follows:
onsider any node pair (𝑠, 𝑡) and 𝜎𝑠𝑡 is the total number of shortest paths
etween these two nodes. If the number of the shortest paths passing
hrough node 𝑖 is denoted by 𝜎𝑖𝑠𝑡, then the betweenness centrality of
ode 𝑖 is given by,

𝑐(𝑖) =
∑ 𝜎𝑖𝑠𝑡

𝜎
. (3)
2

𝑠≠𝑡 𝑠𝑡
Nodes with high betweenness centrality may have considerable influ-
ence in a network since a lot of shortest paths are passing through
them. The closeness centrality and the betweenness centrality could
effectively quantify the influence of node, but they are with high
computational complexity due to calculating the shortest paths between
all pairs of nodes in a network. Eigenvector centrality is that a node’s
importance is not only determined by itself, but also affected by its
neighbors’ importance [5]. A node connecting to important nodes will
make itself also important. With this idea, the eigenvector centrality of
node 𝑖 can be defined as:

𝑐(𝑖) = 1
𝜆
∑

𝑗=1
𝑎𝑖𝑗𝑒(𝑗). (4)

here 𝜆 is not more than largest eigenvalue. Actually, in the matrix
heory,

𝑒 = 𝜆𝑒. (5)

learly, due to this recursive property, eigenvector centrality can reflect
he global features of the network.

.2. Centrality evaluation

For a network, a sequence will be generated through the node
entrality algorithm. But when the network structure changes, the
equence will also change. We will use Gini coefficient, the coefficient
f variation and correlation to analyze the effect of varying cluster and
ssortativity on node centrality in complex networks. Gini coefficient
easures the inequality among values of a frequency distribution,

nd calculates the area between the Lorenz curve and a hypothetical
ine of absolute equality, which is expressed as a percentage of the
aximum area under the line. Thus, a gini coefficient of zero expresses
erfect equality, where all values are the same. A gini coefficient of
expresses maximal inequality among values. Coefficient of variation

CV) is a statistical measure of the dispersion of data points in a data
eries around the mean, which relates the mean and standard deviation
y expressing the standard deviation as a percentage of mean. The
enefit of standard deviation is an absolute measure which explains
he dispersion in the same unit as original data. It is a useful statistic
or comparing the degree of variation from one data series to another,
ven if the means are drastically different from one another.

. Results

.1. Effects of variable network clustering in scale free networks

Node centralities are based on characterizing the network topology
tructure in a certain perspective. Changing the network topology struc-
ure would affect the performance of the node centrality. In this section,
e employ the Holme–Kim(namely HK) model [34] to construct scale

ree networks with tunable clustering to analyze the effects of variable
etwork clustering to the four classical centralities including degree
entrality, closeness centrality, betweenness centrality and eigenvector
entrality. The HK model is introduced as follows, (1). Initial condition:
he network consists 𝑚0 initial fully connected nodes; (2). Preferential
ttachment (PA): at each time step 𝑡, a new single node 𝑗 is added to
he network. In the meanwhile, the new node 𝑗 selects 𝑚 other existed
odes to connect. The probability that a new link will connect 𝑗 to an
xisting node 𝑖 is proportional to the number of links that 𝑖 already,
(𝑗 → 𝑖) = 𝑘𝑖

∑

𝑙 𝑘𝑙
. (3). Triad formation (TF): If an link between 𝑗 and 𝑖

was added in the previous PA step, then add one more edge from 𝑗 to
a randomly chosen neighbor of 𝑖 with the probability 𝑝 = 𝑀𝑡∕(𝑚 − 1).
Where 0 ≤ 𝑝 ≤ 1, thus the parameter 0 ≤ 𝑀𝑡 ≤ (𝑚 − 1). It should be
noted that HK model reduces to the original scale-free network named
BA model [35] when 𝑀𝑡 = 0.

The basic parameter values are that 𝑁 = 10, 000, 𝑚 = 𝑚0 = 3,

and the clustering coefficient with different parameters 𝑀𝑡 is from 0
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Fig. 1. Four centrality measures in scale free networks with tunable clustering. It is noted that the assortative coefficient of the networks generated by all tunable parameters is
that the mean value equals −0.049, and the standard deviation equals 0.008. (a) ROC of the gini index. (b) ROC of the coefficient of variation. (c) Correlation.
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o 2. For the basic attributes of the network, the degree distribution of
he network conforms to the scale-free characteristic. The assortative
oefficient of the network is consistent with that of BA model. That is,
he assortative coefficient of the network generated by all parameters
s that mean value equals −0.049, standard deviation equals 0.008. And
e know that the BA network has very weak cluster, and our experi-
ental measurement is that mean value is −0.038, standard deviation

equals 0.004.
Through triad formation, the cluster of the HK model continues

to increase. We use the BA network as the baseline to analyze the
variation of the four centrality in the HK network as shown in Fig. 1.
Fig. 1a shows the gini ROC in the tunable cluster networks. We can see
that as the network cluster coefficient increases, the gini ROC of the
degree centrality is closed to zero, which is to say the degree centrality
consistent with that of BA, while the gini ROC of closeness centrality
continues to increase, and the value is the largest, followed by between-
ness centrality and the eigenvector centrality. It shows that the cluster
is increased, the inequality of the closeness centrality is higher, and the
degree centrality of inequality is basically unchanged. Fig. 1b shows
change of CV ROC when we adjust the cluster. We can see that as
the network cluster coefficient increases, and CV ROC has also been
rising. Comparing the four centrality indicators, CV ROC of closeness
centrality becomes the highest, followed by that of betweenness, while
CV ROC of degree and eigenvector rises slowly. In addition, although
the gini coefficient of the degree centrality does not change with the
cluster coefficient, the coefficient of variation has changed significantly.
Fig. 1c shows the correlation of the node centrality series before and
after changing the clustering. We can see that as the network cluster
coefficient increases, the correlation of the corresponding centrality
becomes low.

3.2. Effects of variable network assortativity in scale free networks

Next, we investigate the performance of the centrality for a grow-
ing scale-free network model with tunable assortative coefficient. The
growing scale-free network model with tunable assortative coefficient
(namely TASF model) [36] is defined as: (1). The newly added node
connects to the existing node 𝑖 preferentially. This step is described
s the same as Initial condition and Preferential attachment; (2). This
dded node then selects a neighbor node 𝑠 of the node 𝑖 with probability
𝛼(𝑠)∕

∑

𝑗∈𝛤𝑖 𝑘
𝛼(𝑗), where 𝛼 is the tunable parameter and 𝛤𝑖 is the

eighbor node set of node 𝑖.
We set basic parameter values as 𝑁 = 5000 in each network, 𝑚 =

0 = 3, 𝑀𝑡 = 2, and 𝛼 is the tunable parameter. For the basic properties
f the network, the degree distribution of the network conforms to
he scale-free characteristic. The cluster correlation of the network is
onsistent with that of HK, that is, the cluster of the network generated
y all parameters is that mean value equals 0.447, standard deviation
quals 0.112. And we know that the assortative coefficient of the HK
etwork is basically the same as that of BA, and our experimental
3

easurement is that mean value equals −0.047, standard deviation a
quals 0.004. After through the step of adjusting assortative coefficient,
e use the HK network as the baseline to analyze the gini ROC and CV
OC of the four centralities in the TASF network.

Fig. 2a shows the gini ROC with the tunable assortativity from the
egative to the positive. We can see that as the negative correlation
etwork to the positive correlation network, the gini ROC of degree
entrality and betweenness centrality drops all the way, while that of
loseness centrality and eigenvector centrality continues to increase.
his shows that in the more negative correlation networks, the gini

ndex of degree centrality and betweenness centrality is larger than
he baseline, and as the negative correlation turns to the positive
orrelation, the two are getting closer to the baseline, and then smaller
han the baseline. While closeness centrality and eigenvector centrality
re opposite in the more negatively correlated network, the gini index
f the two is smaller than the baseline, and as the negative correlation
urns to the positive correlation, the two are getting closer to the
aseline, and then larger than the baseline. Fig. 2b shows CV ROC with
he tunable assortativity from the negative correlation to the positive
orrelation. We can see that as the negative correlation networks turn to
he positive correlation, CV ROC of degree centrality and betweenness
entrality has dropped, while CV ROC of closeness centrality and eigen-
ector centrality is closed to 0, that is, the two is basically consistent
ith the baseline. This shows that in the more negative correlation
etwork, the gini index of degree centrality and betweenness centrality
s larger than the baseline, and as the negative correlation turns to
he positive correlation, the two are then smaller than the baseline,
hile closeness centrality and eigenvector centrality are opposite, the

wo is close to the baseline. Fig. 2c shows the correlation of the node
entrality series before and after changing the assortativity. We can see
hat as the change of network assortativity coefficient increases, the
orrelation of the centrality also becomes low. In summary, when we
djust assortativity from the negative to the positive, we can find that
egree centrality and betweenness centrality have the same the trend
f change as well as closeness centrality and eigenvector centrality.

.3. Effects of null models on ten real networks to adjust clustering and
ssortativity

Fixing some of the structural properties of network models to their
alues observed in real networks, many other properties appear as
tatistical consequences of these fixed observables. Here we employ the
ull models, a complete set of basic characteristics of the network struc-
ure, to study the statistical dependencies between different network
roperties. The null model is simple and easy to operate. It does not
eed to understand and apply complex mathematical formulas, will not
roduce self-loops and re-edge phenomena, and can accurately main-
ain some physical properties of the real networks. By freely adjusting
he microscopic characteristic parameters such as the average degree,
atching clustering coefficient and assortative coefficient, the struc-

ural diversity of the test network can be effectively observed. There

re usually different order models according to different constraints.
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Fig. 2. Four centrality measures in the scale-free network model with tunable assortative coefficient. The cluster coefficient of these tunable assortative networks is that the mean
value equals 0.447, and the standard deviation equals 0.112. (a) ROC of the gini index. (b) ROC of the coefficient of variation. (c) Correlation.
Fig. 3. Three types of the null model. (a) The zero-order null model (namely null0) is that, each time, randomly select an edge 𝑒(𝑖, 𝑗) in the original network, and then randomly
select two nodes 𝑝, 𝑞. If there is no connected edge between 𝑝 and 𝑞, then delete the original network edge 𝑒(𝑖, 𝑗) and create 𝑒(𝑝, 𝑞). (b) The first-order null model (namely null1)
is as follows, each time the two edges in the original network are randomly selected as 𝑒(𝑖, 𝑗) and 𝑒(𝑝, 𝑞), there are only two edges in the four nodes 𝑖, 𝑗, 𝑝, 𝑞, then delete two
edges 𝑒(𝑖, 𝑗) and 𝑒(𝑝, 𝑞), and create two new edges 𝑒(𝑖, 𝑞) and 𝑒(𝑝, 𝑗). (c) The second-order null model (namely null2) is that just add another constraint on the first-order null model,
that is to say, nodes 𝑖 and 𝑝 (or 𝑗, 𝑞) have the same degree.
We apply three common null models, and the construction process
is shown in Fig. 3. The zero-order null model(namely null0) has the
same number of nodes and the same average degree as the original
network. The specific process is as follows, each time, randomly select
an edge 𝑒(𝑖, 𝑗) in the original network, and then randomly select two
nodes 𝑝, 𝑞. If there is no connected edge between 𝑝 and 𝑞, then delete
the original network edge 𝑒(𝑖, 𝑗) and create 𝑒(𝑝, 𝑞). The first-order null
model(namely null1) not only has the same number of nodes and the
same average degree as the original network, but more importantly has
the same node degree distribution 𝑝(𝑘). The degree distribution refers
to the distribution of the probability or number of node degrees in the
original network. The specific process is as follows, each time the two
edges in the original network are randomly selected as 𝑒(𝑖, 𝑗) and 𝑒(𝑝, 𝑞),
there are only two edges in the four nodes 𝑖, 𝑗, 𝑝, 𝑞, then delete two
edges 𝑒(𝑖, 𝑗) and 𝑒(𝑝, 𝑞), and create two new edges 𝑒(𝑖, 𝑞) and 𝑒(𝑝, 𝑗). The
second-order null model(null2) has the same number of nodes and the
same joint degree distribution as the original network. The joint degree
distribution refers to the number of degrees (probabilities) of the nodes
connected to each end of each edge. The specific process is just to add
another constraint on the first-order null model, that is to say, nodes 𝑖
and 𝑝 (or 𝑗, 𝑞) have the same degree.

We understand that null models of real networks can change the
structure of the network, but how will the four centralities change in
different three null models? We then use 10 real networks according to
the simulation of three null models, and the network basic properties
are shown in Table 1. These ten networks are diverse including social
networks such as Karate [37], Vote [38], PGP [39], Email [40], biologi-
cal networks like Metabolic [41], information network like USAir [42],
As [43], P2P [43], S838 [31], collaboration networks like Jazz [44].
The number of nodes ranges from dozens to tens of thousands, and
4

the edges ranges from dozens to hundreds of thousands. Assortative
Table 1
Topological features of ten real networks considered. 𝑁 is the number of nodes. 𝐸 is
the number of edges. 𝑟 is assortative coefficient. 𝑐 is clustering coefficient.

No. Name N E 𝑟 𝑐

1 Karate 34 78 −0.476 0.571
2 Jazz 198 5,484 0.020 0.617
3 Metabolic 453 4,596 −0.212 0.646
4 S838 512 819 −0.030 0.05465
5 Email 1,133 5,451 0.078 0.220
6 USAir 1,332 2,126 −0.209 0.625
7 As 6,201 12,170 −0.181 0.253
8 P2P 6,301 20,778 0.036 0.011
9 Vote 7,066 100,736 −0.083 0.142
10 PGP 10,680 24,316 0.238 0.266

coefficient is from negative to positive. Clustering coefficient is from 0
to 0.6.

After 50 independent experiments of the null models of each real
network, let us look at the changes of cluster and assortative in ten real
networks as shown in Fig. 4. Fig. 4a shows the ROC of cluster. The null
model prompts to reduce the cluster of the network. Among three kinds
of null models, null0 has the strongest ability to reduce cluster, and
null1 and null2 are weakened. Fig. 4b shows the ROC of assortative.
We can see that under three null models, the change of assortative is
different. In null0, the change is small in PGP, and the change is large
in Vote; In null1, the change is small in Metabolic, but changes greatly
like jazz and vote; In null2, it is almost unchanged in USAir, Metabolic,
As, Vote, but changes greatly in S838. In general, in null models, the
network assortative varies.

Next, we will analyze the effects of null models of real networks on

the four centralities of degree, closeness, betweenness, and eigenvector.
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Fig. 4. The clustering coefficient and assortative coefficient in ten networks after simulating three orders of null models. (a) Clustering coefficient ROC. (b) Assortative coefficient
ROC.
Fig. 5. Variation of degree centrality in 10 networks after simulating null0 model. We compare the degree centrality between original networks and randomizing networks by
null0 model. (a) ROC of the gini index. (b) ROC of the coefficient of variation. (c) Correlation. It is noted that each node degree may change in null0, while degree of each node
in the null1 and null2 will not change, so the network’s degree gini index and coefficient of variation in null1 and null2 are unchanged.
Firstly, look at the results of degree as shown in Fig. 5. Each node
degree may change in null0, while degree of each node in the null1 and
null2 will not change, so the network’s degree gini index and coefficient
of variation in null1 and null2 are unchanged. Fig. 5a shows that the
range of the gini index of ten original networks is between 0.2 and 0.8.
After null0 simulation, except for one jazz network whose gini index is
less than 0.2, the others are aggregated and then between 0.2 and 0.4,
indicating that passing null0 can make the gini index within a relatively
small range. Fig. 5b is given the coefficients of variation of the original
network and null0. We can see that the coefficient of variation in the
original network is less than 2, but after the null0, except for the jazz
network is close to 4, the other changes are not large. Fig. 5c is given
the correlation between the original network and null0. We can see
that the correlation of the networks like karate and s838 is lower than
0.6. While correlation of networks like metabolic, USAir, as, vote is
close to 1, which means the ranking of the node degree centrality series
between the original network and null0 are mostly same.

We continue to analyze the variation of the closeness in the original
network and the three null models as shown in Fig. 6. Let us look at the
change of the gini index as shown in Fig. 6a. In the original networks,
the gini index of closeness is around 0.08, and it is smaller than 0.08 in
null0, while in null1 and null2, there is little change from the original.
Therefore, in general, the value of closeness in the original network and
the three null models are relatively small, indicating that the inequality
5

of closeness itself is relatively small. In Fig. 6b, we see that coefficients
of variation of both the original network and the three null models
is greater than 5. Especially the null0 coefficient of variation in jazz
exceeds 30. Compared with the coefficient of variation in the original
networks, null0 becomes larger, and null1 and null2 remain unchanged.
Fig. 6c shows that the correlation of the closeness centrality series
between the original network and three null models. We can see the
correlation of the closeness centrality series in all networks is low after
simulating first order null models. In addition, if we simulate higher
order null model to the network, we can get more similar network as
the original network, so the correlation of the closeness centrality series
becomes large.

Fig. 7 shows the variation coefficient of betweenness between the
original network and three null models. Fig. 7a also shows the situation
of the original network and three null models. It is worth noting here
that there are two networks, the betweenness of the gini index in As
network is the largest in ten networks, but it becomes smaller in null0.
Another network is that Jazz’s gini index is only close to about 0.3 in
null0. In general, the gini index is getting smaller in null0, and there
is basically no change in null1 and null2. The variation of betweenness
is shown in Fig. 7b. We can see that there are some difference from
the gini index. That is, Jazz has the largest coefficient of variation in
null0, while the as network has a coefficient of variation near zero. In
other networks, the three null models and origin have little change. In



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 166 (2023) 112880X.-Z. Wen et al.
Fig. 6. Variation of closeness centrality in 10 networks after simulating three null models. We compare the closeness centrality between original networks and the randomization
of networks by three orders of null models. (a) The gini value of closeness in the original network and the three null models are relatively small, indicating that the inequality
of closeness itself is relatively small. (b) Compared with the coefficient of variation in the original networks, null0 becomes larger, but null1 and null2 seem unchanged. (c)
Correlation of closeness centrality between the original networks and three null models.
Fig. 7. Variation of betweenness centrality in 10 networks after simulating three null models. We compare the betweenness centrality between original networks and the
randomization of networks by three orders of null models. (a) The gini index is getting smaller in null0, but there is basically no change in null1 and null2. (b) The coefficient
of variation of betweenness in the original network and the three null models are relatively small. (c) Correlation of betweenness centrality.
Fig. 7c, we see that the correlation of the betweenness centrality series
between the original network and three null models which displays the
same results as Fig. 6c.

The last one we will analyze is the eigenvector centrality as shown
in Fig. 8. As one can be seen in Fig. 8a, the gini coefficients of the
eigenvector centrality in 10 original networks range from 0.2 to 1.
After the simulation of three null models, the change of the gini value
is not large, and the gini value range is still wide. The coefficient of
variation is shown in Fig. 8b. We can see that Jazz has the largest
coefficient of variation in null0, while the AS network has a coefficient
of variation near zero. In other networks, the three null models have
little change. The correlation of eigenvector is shown in Fig. 8c, we
see that the correlation of the eigenvector centrality series between
the original network and three null models which describes the same
results as closeness and betweenness.

In summary, we can find that the gini coefficient of closeness
centrality is the smallest, betweenness centrality is the largest, and the
other two are widely distributed. After the simulation of null models,
the gini index of the four centralities will become smaller, especially
after null0, this trend is most obvious. The coefficient of variation of
the four centralities is just the opposite. We can find that the coefficient
of variation of closeness is the largest, betweenness is the smallest,
and the other two are widely distributed. We can also find that the
coefficient of variation after simulating null models becomes larger,
and null0 is particularly obvious. The correlation of the centrality series
6

in all networks after simulating first order null models is low, and
if we simulate higher order null model to the network, we can get
more similar network as the original network, so the correlation of the
closeness centrality series becomes large.

4. Conclusions and discussions

We analyzed the impact of variable network topology on the four
centralities. The variable network topology was centralized on tunable
clustering and assortative coefficient respectively. We first analyzed
the gini index, coefficient of variation of the four centralities in the
scale-free networks with adjustable cluster coefficients under different
parameters. It was found that although the gini coefficient and coef-
ficient of variation of closeness and betweenness increased with the
increase of cluster coefficient, the gini coefficient and coefficient of
variation of the degree and eigenvector centralities were less affected
by the increase of the cluster coefficient. Then we further maintained
the cluster and power law characteristics of the network, and then
adjusted the assortative correlation of the network. The assortative cor-
relation of the network was from the negative to the positive, the gini
coefficient and the coefficient of variation of degree and betweenness
increased. While the closeness and eigenvector were reversed.

Finally, we studied effects of null models of real networks. We used
10 real networks with different network topology and three null models
to simulate these ten networks. After simulating three null models, the



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 166 (2023) 112880X.-Z. Wen et al.

F
i
C

D

i
i

D

Fig. 8. Variation of eigenvector centrality in 10 networks after simulating three null models. We compare the eigenvector centrality between original networks and the randomization
of networks by three orders of null models. (a) The gini value range of the eigenvector centrality in the original network and the three null models are relatively wide. (b) Compared
with the coefficient of variation in the original networks, three null models in the networks seem unchanged much, except the Jazz network. (c) Correlation of eigenvector centrality
between the original networks and three null models.
clustering and assortative coefficient of the network changed greatly.
We also analyzed the gini index and coefficient of variation of the
four centralities. We found that the gini coefficient of closeness was
the smallest, betweenness was the largest, and the other two were
widely distributed. After the null models, the gini index of the four
centralities could became smaller, especially after null0, this trend was
most obvious. The coefficient of variation was just the opposite. We
could observe that the coefficient of variation of closeness was the
largest, betweenness was the smallest, and the other two were widely
distributed. The coefficient of variation after simulating null models
become larger, and null0 was particularly obvious. In addition, we also
gave that the correlation of the node centrality series before and after
changing the clustering and assortativity. As the change of clustering
and assortativity coefficient increased, the correlation of the centrality
also became low.

Through these, the effect of varying topology on node centrality
was great in complex networks. Thereupon we suggest that the tradi-
tional centrality methods are by no means easy to apply to identify
significant or influential nodes, or rank the nodes in the networks
without considering network topology. Our results might also find
practical applications in optimized immunization strategies, which can
be designed to monitor the actual spreaders. In a broader context, our
work could be relevant to other fields of spreading processes, such as
information, behavior, rumor spreading or other dynamical processes,
which may provide insights into the analysis of the collective behavior,
from social influence to biomedical responses.
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