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Multi-view semi-supervised feature selection can identify a feature subset from heterogeneous 
feature spaces of data. However, existing methods fail in handling large-scale data since they have 
to calculate the inverses of high-order dense matrices. Moreover, traditional methods often pre-

construct graphs to mine the similarity structure of data, such that the interaction between graph 
construction and feature selection is directly ignored, degrading their effectiveness in practice. 
To address these issues, we propose an efficient multi-view feature selection method (EMSFS), 
which combines graph learning, label propagation as well as multi-view feature selection within 
a unified framework. Specifically, EMSFS can adaptively learn a bipartite graph between training 
samples and generated anchors, not only reducing the cost of graph computation but also 
tactfully avoiding the inverse of a high-order matrix. As a result, the main computational 
complexity of EMSFS is approximately linear to the number of training samples. Meanwhile, 
EMSFS simultaneously selects important features and exploits the similarity structure in the 
projected feature space, which enhances the reliability of the graph and positively facilitates 
feature selection. To solve the formulated objective function, we developed an alternating 
optimization, and experiments validate the effectiveness and the efficiency of EMSFS.

1. Introduction

As information acquisition technology continues to develop, multi-view data with heterogeneous feature representations have 
become increasingly available in many domains [1,2]. Unlike single-view data, multi-view data can describe research objects from 
diverse perspectives, as the features from different views have partly independent statistical properties [3–5]. However, due to 
the instability of external environments and collection equipment, multi-view data collected from practical applications are often 
high-dimensional and typically contain irrelevant features and noisy dimensions [6]. Thus, directly handling such data not only 
encounters substantial computation and storage costs but also compromises the performance of subsequent tasks [7,8]. As a dimen-

sionality reduction technique, feature selection can eliminate low-quality features from data without altering the original feature 
space, enabling sound interpretability of high-dimensional data. Consequently, the multi-view feature selection that can identify a 
discriminative feature subset from heterogeneous feature spaces, has received considerable attention in recent years [9].
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Fig. 1. Schematic illustration of the proposed multi-view semi-supervised feature selection.

According to the availability of label information for training samples, multi-view feature selection can be achieved through su-

pervised, unsupervised, and semi-supervised manners [10–14]. Due to the expensive and time-consuming process for labeling data, 
there are a limited number of labeled samples in real-world applications [15,16]. As a result, researchers have made efforts on multi-

view semi-supervised feature selection. Existing approaches to obtain a feature subset from multi-view data can be classified into 
two types. The first way directly concatenates different views and then invokes single-view feature selection models, in which the 
similarity structure of data and sparse constraints are often considered. Typical methods mostly exploit the graph-based label prop-

agation and sparse regression to learn projection matrices of concatenated features [17–20]. Unfortunately, these methods equally 
treat different views and overlook the distinctions among diverse views, severely restricting their effectiveness and applicability in 
multi-view scenarios [10,21].

To improve the multi-view feature selection, another strategy introduces a weight for each view to discriminate different views. 
Representative methods first construct graphs on each view independently, and then perform feature selection guided by the la-

bel propagation on different views [22–24]. Nevertheless, they treat the graph construction and feature selection as two separate 
processes and ignore the information interaction between them, which may affect the reliability of graphs and the effectiveness of 
selected features. As a result, several methods have been developed to dynamically update similarity graphs during feature selection. 
For example, the method in [25] dynamically updates the similarity structure in the original feature space of data. The original space 
of data, however, usually contains low-quality features that might make the learned similarity relations unreliable. To alleviate this 
problem, Jiang et al. proposed to learn a joint graph for different views according to the similarity structure in projected feature 
space [26]. Despite making some achievements, existing methods suffer from high computation costs that come from: i) the solution 
procedure of most methods involves the inverse operations of 𝑛 × 𝑛 dense matrices, taking the computational complexity of (𝑛3); ii)
they construct 𝑛-order graphs to explore the similarity structure of data, taking (𝑛2𝑑) (where 𝑛 and 𝑑 are the numbers of samples 
and features, respectively). Therefore, it is difficult to apply these methods to large-scale multi-view semi-supervised feature selection 
tasks, extensively degrading the computational efficiency and applicability in practice. To the best of our knowledge, relatively few 
efforts have been made on accelerating the semi-supervised multi-view feature selection.

To address the challenges mentioned above, we propose an efficient multi-view semi-supervised feature selection (EMSFS) method 
that combines bipartite graph learning with semi-supervised feature selection. Departing from previous works, EMSFS can adaptively 
learn a bipartite graph between training samples and generated anchors, not only improving the computational efficiency of graph 
construction but also tactfully replacing the inverse of a high-order matrix with the simple operations on low-order matrices. As 
a result, the computational complexity of EMSFS is approximately linear to the number of training samples, such that EMSFS can 
efficiently deal with large-scale multi-view data. Moreover, EMSFS incorporates the graph construction, label propagation as well 
as multi-view feature selection into a unified framework, such that it selects discriminative features and simultaneously exploits the 
neighbor relations in the projected space to construct a unified graph for different views, which enhances the quality of the graph 
and positively facilitates the ultimate feature selection. The schematic illustration of EMSFS is shown in Fig. 1.

2. Notations and related works

2.1. Notations

In this section, we first introduce the notations frequently used in the paper. Specifically, matrices and vectors can be written 
in boldface with uppercase and lowercase, respectively. Furthermore, for a matrix 𝐌, 𝐦𝑖 is the 𝑖-th row of 𝐌, ‖𝐌‖𝐹 =

√
Tr(𝐌𝑇𝐌)

denotes the matrix Frobenius norm, and ‖𝐌‖2,1 =∑𝑛
𝑖=1 ‖𝐦𝑖‖2 denotes the 𝑙2,1-norm of 𝐌, where ‖𝐦𝑖‖2 =√

𝐦𝑖𝐦𝑇
𝑖

is the 𝑙2-norm of 
2

the row vector 𝐦𝑖. Table 1 lists the notations throughout the paper.



Information Sciences 649 (2023) 119675C. Zhang, B. Jiang, Z. Wang et al.

Table 1

Table of Notations.

Notation Description

𝑇 The overall number of samples.

𝑛 The total number of training data

𝑙 The number of labeled data

𝑐 The number of classes

𝑉 The number of views

𝑑𝑣 The dimension of 𝑣-th view

𝑑 =
∑𝑉

𝑣=1 𝑑𝑣 The total dimension of V views

𝐱𝑣𝑖 ∈ℝ𝑑𝑣×1 The 𝑖-th sample in 𝑣-th view

𝐱𝑖 = [𝐱1
𝑖
, ...,𝐱𝑉𝑖 ] ∈ℝ𝑑×1 The 𝑖-th sample

𝐗 = [𝐱1 , ...,𝐱𝑛] ∈ℝ𝑑×𝑛 The concatenated feature matrix

𝐙 = [𝐳1 , ..., 𝐳𝑚] ∈ℝ𝑑×𝑚 The generated anchors

𝐘𝑙 ∈ℝ𝑙×𝑐 The label matrix of labeled samples

𝐘𝑛 = [𝐘𝑙 ;𝟎] ∈ℝ𝑛×𝑐 The label matrix

𝐋 ∈ℝ𝑛×𝑛 The graph Laplacian matrix

𝐅 ∈ℝ𝑛×𝑐 The predicted label matrix

𝐖 ∈ℝ𝑑×𝑐 The feature projection matrix

𝐛 ∈ℝ𝑐×1 The bias vector

𝟏 ∈ℝ𝑐×1 The all-one vector.

2.2. Single-view and multi-view semi-supervised feature selection

During recent years, sparse projection learning has become a popular model for feature selection [27,28], whose general formu-

lation can be written as:

min
𝐖

𝐿𝑜𝑠𝑠(𝐖𝑇𝐗,𝐅) + 𝛾𝑅(𝐖), (1)

where the first term measures the discrepancy between the projection subspace 𝐖𝑇𝐗 and the predicted label 𝐅. To ensure that the 
feature projection 𝐖 is row-sparse, 𝑅(𝐖) is often materialized as a sparse regularization, making 𝐖 serve as a feature selection 
matrix [13]. Accordingly, the importance of features can be evaluated by the ‖𝐰𝑖‖2, where 𝐰𝑖 denotes the 𝑖-th row of the feature 
projection 𝐖. To utilize unlabeled data, Ma et al. [17] incorporated the graph-based label propagation [10] into the sparse projection 
learning, and proposed a structural feature selection model, formulated as:

min
𝐅,𝐖,𝐛

Tr(𝐅𝑇𝐋𝐅) + Tr((𝐅−𝐘𝑛)𝑇𝐔𝑛(𝐅−𝐘𝑛))

+ 𝜇‖𝐗𝑇𝐖+ 𝟏𝐛𝑇 − 𝐅‖2
𝐹
+ 𝛾‖𝐖‖2,1, (2)

where 𝜇 and 𝛾 are regularization parameters. 𝐔𝑛 ∈ ℝ𝑛×𝑛 is a diagonal matrix, in which the 𝑖-th diagonal element will be a large 
const if 𝐱𝑖 is labeled and 1 otherwise. In Eq. (2), the first term propagates the label information from labeled samples to unlabeled 
samples, and the second term makes the prediction labels on labeled samples consistent with the given labels. Based on Eq. (2), 
many forms of semi-supervised feature selection models have been developed [16,18,29]. For example, Shi et al. imposed a binary 
hash constraint on the predicted labels and proposed a binary label learning strategy for feature selection tasks [18,30]. Recently, 
Zhang et al. proposed a semi-supervised feature selection method with soft label learning (FSSLL) [19], which employs fuzzy CMeans 
clustering to construct the initial soft label matrix of data. The optimization objective of FSSLL is formulated as:

min
𝐖,𝐅,𝐕

‖𝐅−𝐔‖2
𝐹
+ 𝛼(‖𝐅𝑙𝐕−𝐘𝑙‖2𝐹 + 𝛾‖𝐕‖2

𝐹
)

+ 𝛽(
𝑛∑
𝑖=1

‖𝐖𝑇 𝐱𝑖 − 𝐟𝑖‖22 + 𝜆‖𝐖‖2,1) s.t. 𝐅𝟏 = 𝟏,𝐅 ⩾ 0, (3)

where 𝐔 and 𝐕 denote the pre-learned soft labels of training data and the projection matrix of labeled samples, respectively. To 
reduce computation costs and avoid similarity graphs, FSSLL directly neglects the local neighbor relationships of training data, 
which is very essential for feature selection especially when a few samples are labeled [31].

Moreover, the methods mentioned above directly concatenate different views and neglect the differences among views. To balance 
different views, Shi et al. designed the multi-view Laplacian sparse feature selection (MLSFS), which combines the label propagation 
on different views by introducing view weights [22]. Similarly, Li et al. proposed to fuse similarity graphs across views during the 
process of feature selection [23]. In [24], the Hessian matrices derived from different views are adopted to replace the Laplacian 
matrices of MLSFS. However, the performance of these methods extremely depends on the pre-constructed similarity graphs, neglect-

ing the interaction between feature selection and graph learning. To alleviate this problem, the multi-view adaptive semi-supervised 
feature selection (MASFS) [25] was proposed to update the similarity structures based on the data distance in the original space and 
the current predicted labels, whose objective function is:( )
3

min
𝐅,𝐖,𝜶

Tr(𝐅𝑇𝐋𝐅) + Tr (𝐅−𝐘𝑛)𝑇𝐔𝑛(𝐅−𝐘𝑛) + 𝜇‖𝐗𝑇𝐖− 𝐅‖2
𝐹
+ 𝜆Tr(𝐗𝑇𝐋𝐗)
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+ 𝛽‖𝐖‖ 1
2

2, 12
+ 𝑓 (𝐒𝑣;𝜎) s.t. 𝐋 =

𝑉∑
𝑣=1

𝛼𝛾𝑣𝐋
𝑣,𝜶𝑇 𝟏 = 1, 𝛼𝑣 ∈ [0,1], (4)

where 𝛼𝑣 and 𝐋𝑣 are the view weight and the Laplacian matrix of the 𝑣-th view, respectively. The exponential parameter 𝛾 > 1
controls the distribution of {𝛼𝑣}𝑉𝑣=1. The self-paced function 𝑓 (𝐒𝑣; 𝜎) enables MASFS to update the single-view graph 𝐒𝑣, in which 𝜎 is 
the self-paced learning parameter [32]. Recently, Jiang et al. proposed a multi-view semi-supervised feature selection model (SMFS) 
that mines the similarity structures of data from the original space and the projected feature space, whose graph learning model is 
formulated as:

𝑉∑
𝑣=1

𝑞𝑣‖𝐒− 𝐒𝑣‖2
𝐹
+ 𝜇

𝑛∑
𝑖,𝑗=1

𝑠𝑖𝑗‖𝐖𝑇 𝐱𝑖 −𝐖𝑇 𝐱𝑗‖22 s.t. 𝐒𝟏 = 𝟏,𝐒 ⩾ 0, (5)

where 𝑞𝑣 =
1

2‖𝐒−𝐒𝑣‖𝐹 , the single-view graphs {𝐒𝑣}𝑉
𝑣=1 are constructed from the original feature space. 𝐖 ∈ ℝ𝑑×𝑐 denotes the joint 

feature projection of multiple views. In SMFS, although the undesirable effects of noisy features can be weakened, it takes (𝑛2𝑑) to 
update the 𝑛 × 𝑛 graph 𝐒 in each iteration. Besides, SMFS has to calculate the inverse of an 𝑛 × 𝑛 dense matrix in solving 𝐅, which 
costs (𝑛3), making it impractical for large-scale problems.

2.3. A brief on graph learning

Graph-based semi-supervised learning/feature selection has attracted considerable attention in recent years [31]. Most methods 
typically adopt a two-step strategy of constructing graphs and propagating the label information from labeled samples to unlabeled 
samples, which aim to solve the following minimization problem:

min
𝐅

𝑛∑
𝑖,𝑗=1

‖𝐟𝑖 − 𝐟𝑗‖22𝑠𝑖𝑗 + Tr
(
(𝐅−𝐘)𝑇𝐔(𝐅−𝐘)

)
, (6)

where 𝑠𝑖𝑗 denotes the similarity between the 𝑖-th and 𝑗-th samples. It can be observed that the quality of constructed graphs has 
a direct influence on the performance of graph-based methods. Previous graph construction models use the kernel-based strategy 
(e.g., Gaussian kernel 𝑠𝑖𝑗 =

𝑒𝑥𝑝(−‖𝐱𝐢−𝐱𝑗‖22)
2𝜎2 ) to build graphs [17]. However, this manner needs to manually tune the kernel parameter 

(e.g., the 𝜎 in the Gaussian kernel), degrading the applicability of models in practice. Apart from the kernel parameter involved in 
constructing graphs, these methods learn the similarity structure from all samples, hindering the effective utilization of neighbor 
information [33]. To address these issues, a graph construction model that learns similarity graph based on the distance in the 
original feature space was proposed in [34], as follows

min
𝐒𝟏=𝟏,𝐒⩾0

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑠𝑖𝑗‖𝐱𝑖 − 𝐱𝑗‖22 + 𝜂‖𝐒‖2
𝐹

. (7)

Compared with the kernel-based strategy, the above model learns the similarity information from the 𝑘-nearest neighbor for each 
sample. Nevertheless, the construction of an 𝑛-order graph requires the computational complexity of (𝑛2𝑑), making it impractical 
for large-scale problems.

Recently, several researchers have devoted to learning a bipartite graph rather than the 𝑛-order graph to reduce the computational 
costs of graph construction. For example, He et al. proposed to learn the similarity between the samples and anchor points [35], 
whose objective function is formulated as:

min
𝐒𝟏=𝟏,𝐒⩾0

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑠𝑖𝑗‖𝐱𝑖 − 𝐳𝑗‖22 + 𝜂‖𝐒‖2
𝐹

. (8)

Based on [35], many variants of bipartite graph learning models have been developed. In [36], the distance in the original feature 
space and the current prediction label information were utilized to update the bipartite graph. In [37], the graphs derived from 
different views are fused to learn a unified bipartite graph for multi-view semi-supervised scenarios. Despite making some progress, 
the performance of the above methods is still unsatisfying. One of the limitations is that the graphs are directly constructed from the 
original feature space and remain constant in the learning procedures for most methods. As a result, the graphs might be susceptible 
to low-quality features since the original feature space usually contains irrelative features and noisy dimensions, impairing the 
reliability of the graph, To capture the intrinsic neighbor relations of data accurately, the sample similarity structure in the projected 
feature space should be taken into consideration.

3. Proposed method

3.1. Adaptive bipartite graph learning

Most existing methods suffer from high computational costs issue due to the use of all samples for previously constructing 
similarity graphs [37,38]. Thus, we plan to use 𝑘-means to obtain 𝑚 centers of data as anchors 𝐳𝑗 = [𝐳1

𝑗
, ..., 𝐳𝑉

𝑗
] ∈ ℝ𝑑×1, and then 
4

learn an 𝑛 × 𝑚 bipartite graph 𝐒 that compatibly crosses multiple views. Meanwhile, feature selection and bipartite graph learning 
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are performed simultaneously to fully utilize the interaction information between them, which can effectively alleviate the adverse 
effects of noisy features and positively facilitate the subsequent tasks. To this end, two aspects should be considered for bipartite 
graph construction: i) the similarity relations derived from the original feature space are easily affected by redundant and noisy 
features, leading to an inaccurate similarity graph; ii) different views contain complementary information and share a consistent 
local structure. According to the principle that the smaller distance between samples and anchors in the projection subspace, the 
larger similarity between them, we propose the feature projection-based adaptive bipartite graph learning, formulated as:

min
𝐒𝟏=𝟏,𝐒⩾0

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑠𝑖𝑗‖ 𝑉∑
𝑣=1

𝛼𝑣𝐖𝑇
𝑣 𝐱𝑣𝑖 −

𝑉∑
𝑣=1

𝛼𝑣𝐖𝑇
𝑣 𝐳𝑣𝑗 ‖22 + 𝜂‖𝐒‖2

𝐹
, (9)

where 𝑠𝑖𝑗 measures the similarity between sample 𝐱𝑖 and anchor 𝐳𝑗 across all of the views, and 𝜂 > 0 is the regularization parameter. 
The view-specific feature projection 𝐖𝑣 ∈ℝ𝑑𝑣×𝑐 can map the original features 𝐗𝑣 ∈ℝ𝑑𝑣×𝑛 into the corresponding subspace, and 𝛼𝑣 is 
the view weight factor that can discriminate different feature projection subspaces. Thus, Eq. (9) can mine and balance the similarity 
structures among multiple views. By introducing the feature projection 𝐖𝑣, the similarity structure in the weighted projection 
subspace (i.e., 𝛼𝑣𝐗𝑇

𝑣 𝐖𝑣) can be exploited to learn a unified bipartite graph 𝐒 for multiple views. In this way, bipartite graph learning 
and feature selection can benefit from each other in a mutual reinforcement manner. Denoting the 𝐮𝑖 is a row vector with 𝑢𝑖𝑗 =‖ ∑𝑉

𝑣=1 𝛼𝑣𝐖
𝑇
𝑣 𝐱𝑣

𝑖
−
∑𝑉

𝑣=1 𝛼𝑣𝐖
𝑇
𝑣 𝐳𝑣

𝑗
‖22 sorted from small to large, and assuming that each sample has k nearest neighbors (i.e., 𝐬𝑖 has 𝑘

nonzero elements), the parameter 𝜂 can be determined adaptively as: 𝜂 =∑𝑛
𝑖=1

𝑘𝑢𝑖,𝑘+1−
∑𝑘
𝑗=1 𝑢𝑖,𝑗

2𝑛 , and the solution of Eq. (9) is derived 
as:

𝑠𝑖𝑗 = (
𝑢𝑖,𝑘+1 − 𝑢𝑖,𝑗

𝑘𝑢𝑖,𝑘+1 −
∑𝑘

𝑗=1 𝑢𝑖𝑗
)+. (10)

Thus, this manner not only enhances the reliability of the learned graph (i.e., the similarity relation learns from 𝑘 nearest projected 
neighbors are more accurate [39]) but also releases the model from an extra parameter.

In Eq. (9), the anchor points can be considered as the newly unlabeled samples, and its corresponding prediction label matrix 
is denoted as 𝐆 ∈ ℝ𝑚×𝑐 . To propagate the label information from labeled samples to unlabeled samples (including the anchors 𝐙) 
according to the similarity relations of data, we can define an augmented matrix 𝐒̃ =

[ 𝟎 𝐒

𝐒𝑇 𝟎

]
∈ ℝ(𝑛+𝑚)×(𝑛+𝑚). With the augmented 

matrix of the bipartite graph 𝐒, the label propagation can be formulated as:

Tr

([
𝐅
𝐆

]𝑇
𝐋𝐒̃

[
𝐅
𝐆

])
+ Tr

([
𝐅−𝐘𝑛

𝐆

]𝑇
𝐔
[
𝐅−𝐘𝑛

𝐆

])
, (11)

where 𝐔 =
[𝐔𝑛 𝟎

𝟎 𝟎

]
∈ℝ(𝑛+𝑚)×(𝑛+𝑚), and 𝐋𝐒̃ denotes the Laplacian matrix of 𝐒̃, which is calculated as follows:

𝐋𝐒̃ =
[
𝐃𝑠 𝟎
𝟎 𝚲

]
−
[

𝟎 𝐒
𝐒𝑇 𝟎

]
=
[

𝐈𝑛 −𝐒
−𝐒𝑇 𝚲

]
, (12)

where 𝐃𝑠 and 𝚲 are diagonal matrices whose elements are row sums and column sums of the bipartite graph 𝐒, respectively.

3.2. EMSFS with bipartite graph

We propose an efficient multi-view semi-supervised feature selection (EMSFS) that combines bipartite graph learning, label 
propagation, and multi-view feature selection within a unified learning framework. To increase the robustness of feature projection 
learning against outliers, the 𝑙2,1-norm constraint is imposed on the regression loss. Therefore, the objective function of EMSFS is 
formulated as follows:

min
𝐖𝑣,𝐑,𝐒,𝜶

‖𝐅−
𝑉∑
𝑣=1

𝛼𝑣𝐗𝑇
𝑣 𝐖𝑣‖2,1 + 𝜆

𝑉∑
𝑣=1

‖𝐖𝑣‖2,1 + 𝛾Tr(𝐑𝑇𝐋𝐒̃𝐑)

+ Tr
(
(𝐑−𝐘)𝑇𝐔(𝐑−𝐘)

)
+ 𝛽

( 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑠𝑖𝑗‖ 𝑉∑
𝑣=1

𝛼𝑣𝐖𝑇
𝑣 𝐱𝑣𝑖 −

𝑉∑
𝑣=1

𝛼𝑣𝐖𝑇
𝑣 𝐳𝑣𝑗 ‖22 + 𝜂‖𝐒‖2

𝐹

)
s.t. 𝜶 ⩾ 0,𝜶𝑇 𝟏 = 1, 𝐒𝟏 = 𝟏,𝐒 ⩾ 0, (13)

where 𝐑 =
[ 𝐅

𝐆

]
, 𝐘 =

[𝐘𝑛

𝟎

]
∈ℝ(𝑛+𝑚)×𝑐 . To select informative and discriminative features in the case of relatively limited labeled sam-

ples, EMSFS uses label propagation to embed the multi-view sparse projection learning into the bipartite graph construction, making 
them benefit from each other in the learning phase. Specifically, the graph structure among training samples can be better constructed 
in the feature projection subspace, such that the label information of training samples will be enriched via the label propagation 
on the learned bipartite graph. In this way, sparse projection learning can learn a discriminative feature selection/projection matrix 
5

guided by the prediction label 𝐅.
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However, the coupled relationship between 𝐅 and the projection subspaces in the 𝑙2,1-norm regression loss makes the original 
optimization problem in Eq. (13) difficult to be optimized directly. To make Eq. (13) separable, an auxiliary variable 𝐄 is introduced, 
which can transform the original optimization problem into the following equivalent problem:

min
𝐖𝑣,𝐑,𝐒,𝜶,𝐄

‖𝐄‖2,1 + 𝜆

𝑉∑
𝑣=1

‖𝐖𝑣‖2,1 + 𝛾Tr(𝐑𝑇𝐋𝐒̃𝐑) + Tr
(
(𝐑−𝐘)𝑇𝐔(𝐑−𝐘)

)
+ 𝛽

( 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑠𝑖𝑗‖ 𝑉∑
𝑣=1

𝛼𝑣𝐖𝑇
𝑣 𝐱𝑣𝑖 −

𝑉∑
𝑣=1

𝛼𝑣𝐖𝑇
𝑣 𝐳𝑣𝑗 ‖22 + 𝜂‖𝐒‖2

𝐹

)

s.t. 𝜶 ⩾ 0,𝜶𝑇 𝟏 = 1, 𝐒𝟏 = 𝟏,𝐒 ⩾ 0,𝐄 = 𝐅−
𝑉∑
𝑣=1

𝛼𝑣𝐗𝑇
𝑣 𝐖𝑣. (14)

Eq. (14) can be efficiently solved by the augmented Lagrangian multiplier (ALM) method [40]. Thus, the original optimization 
problem in Eq. (13) is transformed into the following ALM problem:

min
𝐖𝑣,𝐑,𝐒,𝜶,𝐄

‖𝐄‖2,1 + 𝜆

𝑉∑
𝑣=1

‖𝐖𝑣‖2,1 + 𝛾Tr(𝐑𝑇𝐋𝐒̃𝐑) + Tr
(
(𝐑−𝐘)𝑇𝐔(𝐑−𝐘)

)
+ 𝛽

( 𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑠𝑖𝑗‖ 𝑉∑
𝑣=1

𝛼𝑣𝐖𝑇
𝑣 𝐱𝑣𝑖 −

𝑉∑
𝑣=1

𝛼𝑣𝐖𝑇
𝑣 𝐳𝑣𝑗 ‖22 + 𝜂‖𝐒‖2

𝐹

)
+ 𝜇

2
‖𝐄− 𝐅+

𝑉∑
𝑣=1

𝛼𝑣𝐗𝑇
𝑣 𝐖𝑣 +

𝚷
𝜇
‖2
𝐹

s.t. 𝜶 ⩾ 0,𝜶𝑇 𝟏 = 1, 𝐒𝟏 = 𝟏,𝐒 ⩾ 0, (15)

where 𝜇 ∈ ℝ1×1 is a penalty parameter, and 𝚷 ∈ ℝ𝑛×𝑐 denotes the Lagrange multipliers. To obtain the solutions of all variables, we 
design an optimization strategy that alternately solves each variable of Eq. (15) with others fixed. The detailed solution procedures 
are as follows.

Update 𝐄: By fixing other variables, we can update 𝐄 by addressing the following subproblem:

min
𝐄

1
𝜇
‖𝐄‖2,1 + 1

2
‖𝐄− 𝐉‖2

𝐹
, (16)

where 𝐉 = 𝐅 −∑𝑉
𝑣=1 𝛼𝑣𝐗

𝑇
𝑣 𝐖𝑣 −

𝚷
𝜇

. According to [41], the optimal solution of 𝐄 is:

𝐞𝑖 =
{

(1 − 1
𝜇‖𝐣𝑖‖2 )𝐣𝑖, if ‖𝐣𝑖‖2 > 1

𝜇
;

0, otherwise,
(17)

where 𝐞𝑖 and 𝐣𝑖 are the 𝑖-th columns of 𝐄 and 𝐉, respectively.

Update 𝐅, 𝐆 and 𝐖𝑣: When other variables are fixed except 𝐅, 𝐆 and 𝐖𝑣, the view-wise weight 𝛼𝑣 can be merged into the 
corresponding feature projection 𝐖𝑣 as 𝛼𝑣𝐖𝑣 = 𝐖𝑣, where 𝐖𝑣 plays the role of a weighted feature projection. Thus, the problem in 
Eq. (15) becomes:

min
𝐅,𝐆,𝐖

𝜆

𝑉∑
𝑣=1

‖𝐖𝑣‖2,1
𝛼𝑣

+ 𝛾Tr(
[ 𝐅

𝐆

]𝑇
𝐋𝐒̃

[ 𝐅

𝐆

]
) + Tr

(
(
[ 𝐅

𝐆

]
−𝐘)𝑇𝐔(

[ 𝐅

𝐆

]
−𝐘)

)
+ 𝛽

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑠𝑖𝑗‖𝐖𝑇 𝐱𝑖 −𝐖𝑇 𝐳𝑗‖22 + 𝜇

2
‖𝐄− 𝐅+𝐗𝑇𝐖+ 𝚷

𝜇
‖2
𝐹

, (18)

where 𝐖 = [𝛼1𝐖1, ⋯ , 𝛼𝑉 𝐖𝑉 ]𝑇 ∈ ℝ𝑑×𝑐 denotes the joint feature projection of all the views. Obviously, {𝑾 𝑣}𝑉𝑣=1 can be determined 
via solving the joint projection 𝑾 with fixed {𝛼𝑣}𝑉𝑣=1. Furthermore, we can prove that the objective function in Eq. (18) is jointly 
convex w.r.t. 𝐖, 𝐅 and 𝐆.

Proof. We first denote the objective function in Eq. (18) as 𝑔(𝐖, 𝐅, 𝐆), then define a matrix 𝐌 as:

𝐌 =
⎡⎢⎢⎣
𝜇

2 𝐈+ 𝛾𝐈+𝐔𝑛 −𝛾𝐒 − 𝜇

2 𝐗
−𝛾𝐒𝑇 𝛾𝚲 𝟎
− 𝜇

2 𝐗𝑇 𝟎 𝛽𝐇+ 𝜆𝐀+ 𝜇

2 𝐗𝐗𝑇

⎤⎥⎥⎦ ∈ℝ(𝑛+𝑚+𝑑)×(𝑛+𝑚+𝑑), (19)

where 𝐇 = 𝐗𝐗𝑇 +𝐙𝚲𝐙𝑇 −2𝐗𝐒𝐙𝑇 and 𝐀 = [𝐀1, ⋯ , 𝐀𝑉 ] is a diagonal matrix with 𝐀𝑣 = 1
2𝛼𝑣

diag( 1‖𝐰̃𝑣
1‖2 , ⋯ , 1‖𝐰̃𝑣

𝑑𝑣
‖2 ). Accordingly, 𝑔(𝐖, 𝐅, 𝐆)

can be rewritten in the matrix form:

𝑔(𝐖,𝐅,𝐆) = Tr

(⎡⎢⎢
𝐅
𝐆

⎤⎥⎥
𝑇

𝐌
⎡⎢⎢

𝐅
𝐆

⎤⎥⎥
)

−Tr

(⎡⎢⎢
𝐅
𝐆

⎤⎥⎥
𝑇 ⎡⎢⎢2𝐔𝑛𝐘𝑛 + 𝜇𝐄+𝚷

𝟎
⎤⎥⎥
)

. (20)
6

⎣𝐖⎦ ⎣𝐖⎦ ⎣𝐖⎦ ⎣ −𝜇𝐗𝐄−𝐗𝚷 ⎦
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Algorithm 1 : Optimization procedures for EMSFS.

Input: Training data 𝐗, given labels of labeled data, single-view graphs {𝑺𝑣}𝑉
𝑣=1 , the number of anchors 𝑚, and parameters 𝜆, 𝛽 and 𝛾 ;

1: Initialize 𝛼𝑣 = 1∕𝑉 (𝑣 = 1, ⋯ , 𝑉 ), 𝐒 =∑𝑉

𝑣=1 𝐒𝑣∕𝑉 , 𝐀 as the identity matrix, 𝚷 = 𝟎, 𝜇 = 10−4 and 𝜌 = 1.1; Generate 𝑚 anchors by 𝑘-means;

2: repeat

3: Update 𝐄 by Eq. (16);

4: Update 𝐆 by Eq. (22);

5: Update 𝐅 by Eq. (24);

6: repeat

7: With current 𝐀, update ̃𝐖 by Eq. (26);

8: With current ̃𝐖, calculate the diagonal matrix 𝐀;

9: until Eq. (26) converges;

10: Update each row of 𝐒 by solving Eq. (28);

11: Update 𝜶 by Eq. (29);

12: Update 𝚷 and 𝜇 by Eq. (30);

13: until Eq. (15) converges;

Output: The selected 𝑟 features with the highest scores (i.e. {‖𝐰̃𝑖‖2}𝑑𝑖=1).

To prove that 𝑔(𝐖, 𝐅, 𝐆) is jointly convex, we have to prove that the matrix 𝐌 is positive semi-definite. Defining an arbitrary vector 
𝐯 = [𝐯𝑇1 , 𝐯

𝑇
2 , 𝐯

𝑇
3 ]

𝑇 ∈ℝ(𝑛+𝑚+𝑑)×1, where 𝐯1 ∈ℝ𝑛×1, 𝐯2 ∈ℝ𝑚×1 and 𝐯3 ∈ℝ𝑑×1, we have

𝐯𝑇𝐌𝐯 = 𝐯𝑇1 𝐔𝑛𝐯1 + 𝐯𝑇3 (𝛽𝐇+ 𝜆𝐴)𝐯3 +
𝜇

2
(𝐯1 −𝐗𝑇 𝐯3)𝑇 (𝐯1 −𝐗𝑇 𝐯3)

+ 𝛾

[
𝐯1
𝐯2

]𝑇 [
𝐈 −𝐒

−𝐒𝑇 𝚲

][
𝐯1
𝐯2

]
. (21)

As 𝐔𝑛 and 𝐀 are nonnegative diagonal matrices, and 𝐇 and 
[

𝐈 −𝐒
−𝐒𝑇 𝚲

]
are positive semi-definite [42], it can be concluded that 

𝐯𝑇𝐌𝐯 ⩾ 0 is true for all possible 𝐯. Thus, 𝐌 is positive semi-definite, and Eq. (18) should be jointly convex w.r.t. 𝐖, 𝐅 and 𝐆.

Taking the derivative of Eq. (18) w.r.t. 𝐆 and setting it to zero, we have:

𝐆 = 𝚲−1𝐒𝑇 𝐅. (22)

Then, we can substitute 𝐆 of Eq. (22) into Eq. (18) and set its derivative w.r.t. 𝐅 to zero, the solution of 𝐅 is obtained as follows:

𝐅 = (𝐏− 𝛾𝐒𝚲−1𝐒𝑇 )−1𝐐, (23)

where 𝐏 = (𝛾 + 𝜇

2 )𝐈 +𝐔𝑛 is a diagonal matrix, and 𝐐 = 𝐔𝑛𝐘𝑛 +
𝜇

2 (𝐄 +𝐗𝑇𝐖+ 𝚷
𝜇
). Although the solution of 𝐅 in Eq. (23) seems simple, 

it involves the inverse operation of an 𝑛 × 𝑛 dense matrix (i.e., 𝐏 − 𝛾𝐒𝚲−1𝐒𝑇 ), which takes the computational complexity of (𝑛3) at 
least. Instead of it, we further exploit the matrix identity1 to simplify the solution of 𝐅 as:

𝐅 = 𝐏−1𝐐+ 𝐏−1𝐒(𝚲
𝛾
− 𝐒𝑇 𝐏−1𝐒)−1𝐒𝑇𝐏−1𝐐, (24)

where 𝚲
𝛾
− 𝐒𝑇 𝐏−1𝐒 is an 𝑚 × 𝑚 matrix. Therefore, the inverse operation of the 𝑛-order dense matrix in Eq. (23) is equivalently 

substituted by the inverses of the 𝑛-order diagonal matrix (i.e., 𝐏) and the 𝑚-order matrix (i.e., 𝚲
𝛾
−𝐒𝑇 𝐏−1𝐒), as well as several matrix 

multiplications. By computing the terms in Eq. (24) one by one from right to left, the computational complexity of solving 𝐅 can be 
reduced from (𝑛3) to (𝑛𝑚2 + 𝑛𝑑𝑐 +𝑚3), making the proposed EMSFS scale well with the number of training samples.

When other variables are fixed, we substitute the optimal solutions of 𝐆 and 𝐅 into Eq. (18), then obtain the following subproblem:

min
𝐖

𝜇

2
Tr
(
𝐖𝑇𝐗(2𝐄+𝐗𝑇𝐖+ 2

𝜇
𝚷)

)
−Tr

(
𝐐𝑇 (𝐏− 𝛾𝐒𝚲−1𝐒𝑇 )−1𝐐

)
+ 𝜆Tr(𝐖𝑇𝐀𝐖) + 𝛽

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑠̃𝑖𝑗‖𝐖𝑇 𝐱𝑖 −𝐖𝑇 𝐳𝑗‖22. (25)

Substituting 𝐐 =𝐔𝑛𝐘𝑛 +
𝜇

2 (𝐄 +𝐗𝑇𝐖+ 𝚷
𝜇
) into Eq. (25) and setting its derivative w.r.t.𝐖 to zero, we have:

𝐖 = (𝜆𝐀+ 𝛽𝐁+𝐂)−1𝐃, (26)

where 𝐁 = 𝐗𝐗𝑇 + 𝐙𝚲𝐙𝑇 − 𝐗𝐒𝐙𝑇 − 𝐙𝐒𝑇𝐗𝑇 , 𝐂 = 𝜇

2 𝐗𝐗𝑇 − 𝜇2

4 𝐗(𝐏 − 𝛾𝐒𝚲−1𝐒𝑇 )−1𝐗𝑇 , and 𝐃 =
(
𝜇

2 𝐗(𝐏 − 𝛾𝐒𝚲−1𝐒𝑇 )−1(𝐔𝑛𝐘𝑛 +
𝜇

2 (𝐄 + 𝚷
𝜇
)) −

𝜇

2 𝐗(𝐄 + 𝚷
𝜇
)
)

. Since 𝐀 is also unknown and depends on 𝐖, thus we can alternately update 𝐀 and 𝐖.
7

1 (𝑨+𝑩𝑪𝑩
𝑇 )−1 =𝑨

−1 −𝑨
−1
𝑩(𝑪−1 +𝑩

𝑇
𝑨

−1
𝑩)−1𝑩𝑇

𝑨
−1 .
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Table 2

The computational complexity of multi-view methods.

Methods Constructing graph 𝐒 Solving 𝐅 Total computational complexity

MLSFS (𝑛2𝑑) (𝑛3 + 𝑛𝑑𝑐) (𝑛3 + 𝑛2𝑑 + 𝑑3)
MASFS (𝑛2𝑑) (𝑛3 + 𝑛𝑑𝑐) (𝑛3 + 𝑛2𝑑 + 𝑑3)
SMFS (𝑛2𝑑) (𝑛3 + 𝑛𝑑𝑐) (𝑛3 + 𝑑3)
EMSFS (𝑛𝑚𝑑 + 𝑛𝑚 log𝑚) (𝑛𝑚2 + 𝑛𝑑𝑐 +𝑚3) (𝑛𝑚2 + 𝑛𝑑2 + 𝑛𝑚𝑑 +𝑚3 + 𝑑3)

Update 𝐒: By fixing other variables, the subproblem of 𝐒 becomes:

min
𝐒𝟏=𝟏,𝐒⩾0

𝛾

𝑛∑
𝑖=1

𝑚∑
𝑗=1

‖𝐟𝑖 − 𝐠𝑗‖22𝑠𝑖𝑗 + 𝛽𝜂

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑠2𝑖𝑗

+ 𝛽

𝑛∑
𝑖=1

𝑚∑
𝑗=1

𝑠𝑖𝑗‖𝐖𝑇 𝐱𝑖 −𝐖𝑇 𝐳𝑗‖22, (27)

where 𝐟𝑖 is the 𝑖-th row of 𝐅, and 𝐠𝑗 is the 𝑗-th row of 𝐆. Eq. (27) is independent for different rows, such that each row of 𝐒 (i.e., 𝐬𝑖) 
can be separately optimized:

min
𝐬𝑖𝟏=1,𝐬𝑖⩾0

‖𝐬𝑖 + 1
2𝜂

𝐮𝑖‖22, (28)

where 𝐮𝑖 is a row vector with 𝑢𝑖𝑗 =
𝛾

𝛽
‖𝐟𝑖 − 𝐠𝑗‖22 + ‖𝐖𝑇 𝐱𝑖 −𝐖𝑇 𝐳𝑗‖22. Eq. (28) can be efficiently optimized with a closed-form solution, 

and the regularization parameter 𝜂 can be automatically determined via the 𝑘 nearest anchors [34].

Update 𝜶: By fixing other variables, 𝜶 can be solved as follows (see [26]):

𝛼𝑣 =
‖𝐖𝑣‖ 1

2
2,1

(
∑𝑉

𝑣=1 ‖𝐖𝑣‖ 1
2
2,1)

. (29)

Update 𝚷 and 𝜇: In each iteration, the Lagrange multipliers 𝚷 and penalty parameter 𝜇 are respectively updated as follows:

𝚷 = 𝚷+ 𝜇(𝐄− 𝐅+𝐗𝑇𝐖)

𝜇 = 𝜌𝜇, (30)

where 1 < 𝜌 < 2 denotes the updated rate, which is a constant.

The main procedures for solving Eq. (15) are summarized in Algorithm 1. The proposed EMSFS is iteratively optimized, whose 
main computational complexity comes from the generation of anchors and the updates of 𝐄, 𝐆, 𝐖, 𝐅 and 𝐒. Firstly, using 𝑘-

means to generate 𝑚 anchors takes (𝑛𝑚𝑑). Then, in each iteration, updating 𝐆, 𝐅 and 𝐖 costs (𝑛𝑚𝑐), (𝑛𝑚2 + 𝑛𝑑𝑐 + 𝑚3) and 
(𝑛𝑚2 + 𝑛𝑑2 + 𝑛𝑚𝑑 + 𝑛𝑑𝑐 + 𝑚3 + 𝑑3), respectively. Besides, solving 𝐄 takes (𝑛𝑑𝑐), and calculating 𝐒 needs (𝑛𝑚𝑑 + 𝑛𝑚 log𝑚 + 𝑛𝑘𝑑), 
where 𝑘 is the number of neighbors. Since 𝑐 and 𝑘 are small constants, EMSFS approximately costs the computational complexity of 
(𝑛𝑚2 + 𝑛𝑑2 + 𝑛𝑚𝑑 +𝑚3 + 𝑑3), which is linearly related to the training data size 𝑛, making EMSFS more efficient than the state-of-the-

art competitors. We summarize the computational costs of EMSFS and other multi-view semi-supervised feature selection methods 
in Table 2, which includes the complexity of constructing graph 𝐒 and solving 𝐅, as well as their total computational costs.

4. Experiments

In this section, we present a series of experiments that aim to demonstrate the superiority of our proposed EMSFS method. 
The experiments are divided into two parts. In the first part, we evaluate the effectiveness and efficiency of EMSFS on real-world 
multi-view datasets. In the second part, we conduct a comprehensive analysis of EMSFS from various perspectives to gain a better 
understanding of its performance and characteristics.

4.1. Experimental datasets and settings

To comprehensively assess the effectiveness of EMSFS, we conduct a comparative study with five state-of-the-art feature selection 
methods, namely FSSLL [19], MLSFS [22], MASFS [25], SMFS [26], and multi-view sparse feature selection (MSFS) [43]. Our 
experiments employ eight widely used multi-view datasets, with data sizes ranging from 1440 to 70000 and feature sizes ranging 
from 192 to 2801, including COIL20, Leaves, Handwritten, SCENE, COIL100, ALOI, NUS-WIDE and MNIST. Further details on each 
dataset are provided in Table 3.

For each dataset except MNIST, we randomly select 80% of samples for training. On the MNIST dataset, we use 30% of samples 
for training and the rest for testing. With different labeled ratios, the training data is randomly divided into the labeled and unla-
8

beled sample sets. The number of anchors 𝑚 is determined by the training sample sizes on different datasets (e.g., 𝑚 = 1% × 𝑛 for 
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Table 3

Detailed information on multi-view datasets.

View COIL20 Leaves Handwritten SCENE COIL100 ALOI NUS-WIDE MNIST

#1 GIST(512) SD(64) PIX(240) GIST(512) PCA(200) CS(77) HIST(64) GIST(256)

#2 HOG(420) FSM(64) FOU(76) HOG(432) NPE(200) Haralick(13) BCM(225) HOG(144)

#3 LBP(1239) TH(64) FAC(216) LBP(256) ISOP(200) HIST(64) ACG(144) LBP(59)

#4 SIFT(630) - ZER(47) GABOR(48) - HSV(125) EDH(73) -

#5 - - KAR(64) - - - WT(128) -

#6 - - MOR(6) - - - - -

Feature size 2801 192 649 1248 600 279 634 459

Classes 20 100 10 8 100 100 12 10

Data size 1440 1600 2000 2688 7200 10800 12000 70000

MNIST, and 𝑚 = 5% × 𝑛 for other datasets). To ensure fair comparisons, the parameters of all methods are turned from the range 
of {10−3, 10−2, ⋯ , 103}, and each method is run 20 times on different training and testing partitions independently. Following the 
conventions of feature selection, different feature selection methods are first implemented on the training samples to select relevant 
features, then the Regularized Least Square Classification (RLSC) with a fixed regularization parameter is employed to train a classi-

fier on the selected features. Finally, the results of each method on the testing samples are reported to evaluate the effectiveness of 
selected features.

4.2. The effectiveness and efficiency for multi-view feature selection

To assess the effectiveness of the selected features, we performed feature selection with a fixed number of labeled samples. 
Specifically, we used a 3% labeled ratio for the MNIST dataset and a 30% labeled ratio for the other datasets. Table 4 reports the 
classification results obtained with a varying number of selected features, where “OM” denotes an out-of-memory error encoun-

tered during the experiments. Additionally, we fixed the number of selected features at 25% of the total number of features (𝑑) 
and evaluated the impact of labeled samples on feature selection. The corresponding results are presented in Table 5, where the 
ratios of labeled samples are varied from {1%, 2%, 3%, 4%} for MNIST and {10%, 20%, 30%, 40%} for the other datasets. Based on the 
experimental results presented in Table 4 and Table 5, we can draw the following conclusions:

• EMSFS consistently achieves competitive or superior results with the different number of selected features, highlighting the 
effectiveness and superiority of EMSFS over state-of-the-art methods.

• EMSFS achieves superior results compared to the supervised method (i.e., MSFS) and the single-view method (i.e., FSSLL), which 
verifies that mining the similarity structure of unlabeled data and taking into account the correlations and distinctions among 
views indeed benefit the multi-view feature selection.

• EMSFS outperforms MLSFS and MASFS in most situations, highlighting the effectiveness of adaptively assigning appropriate 
weights to different views and exploiting the similarity relations in the projected feature space for feature selection. Additionally, 
EMSFS can avoid the memory overflow problem associated with handling large-scale data, whereas MLSFS, MASFS, and SMFS 
encounter the out-of-memory error on the MNIST dataset. These findings demonstrate the efficiency and scalability of EMSFS 
compared to other methods.

• As the number of labeled samples increases, EMSFS exhibits stable performance improvement and outperforms most other 
methods, indicating its ability to select discriminative features with a sufficient number of labeled samples.

To comprehensively analyze the performance between EMSFS and other methods with statistical significance, we further adopt 
the Friedman test combining with the two-tailed Bonferroni-Dunn test [44] to make a statistical test. Specifically, the results of two 
methods are significantly different if their average ranks2 on all datasets differ by at least the critical difference (CD): CD = 𝑞𝜋

√
𝑝(𝑝+1)
6𝑁 , 

where 𝑝 is the number of methods, 𝑁 is the number of datasets, 𝜋 denotes the significance level, and 𝑞𝜋 is the critical value. According 
to the experimental results in Table 5 of the revised manuscript, three multi-view semi-supervised feature selection methods, MLSFS, 
MASFS and SMFS are chosen to compare with the proposed EMSFS. Choosing 𝜋 = 5% and 𝑞𝜋 = 2.39 (𝑝 = 4), the critical difference 
becomes CD = 1.55. Fig. 2 demonstrates the Friedman test results of the proposed EMSFS and other multi-view semi-supervised 
feature selection methods with different labeled ratios. We can observe that the differences between EMSFS and the method (i.e., 
MLSFS) that uses fixed similarity graphs during feature selection, and the differences between EMSFS and the method (i.e., MASFS) 
that updates graphs according to the similarity structure in the original feature space, are greater than CD, which means that EMSFS 
is significantly better than MLSFS, and MASFS. This demonstrates that it is effective to integrate similarity graph learning into the 
feature selection process and adaptively learn the similarity structure in the projected feature subspace. Although the differences 
between EMSFS and the method (i.e., SMFS) that explores the structure information in the original data space and the projected 

2 We rank EMSFS with other multi-view semi-supervised feature selection methods and record their ranks as 1, 2 and so on. Average ranks are assigned in the case 
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of ties. The average rank of each method is obtained by averaging over all of the datasets.
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Table 4

Results (ACC± STD%) on the testing data with various numbers of selected features. The best results are in bold, “OM” denotes an out-of-memory error and * denotes 
the results are not significantly worse than the best using the paired t-test at the 5% significance level.

Datasets Feature ratio MSFS FSSLL MLSFS MASFS SMFS EMSFS

COIL20

10% 95.71±1.20 95.96±1.98 96.98±1.16 96.92±1.01 97.79±0.87* 98.16±0.65

15% 96.88±1.16 97.79±1.10 98.30±0.75 98.37±1.19 98.85±0.41 98.58±0.53*

20% 98.06±0.52 98.35±1.01 99.02±0.64 99.13±0.78 99.44±0.48 99.27±0.42*

25% 98.47±0.87 98.65±1.08 99.27±0.39 99.34±0.61* 99.51±0.38* 99.59±0.34

30% 98.78±0.80 98.89±0.73 99.21±0.42 99.41±0.53 99.62±0.35* 99.63±0.33

35% 98.99±0.69 99.18±0.69 99.40±0.38 99.51±0.43* 99.57±0.37* 99.62±0.37

40% 99.03±0.64 99.35±0.52 99.34±0.36 99.54±0.42* 99.57±0.40* 99.65±0.31

Leaves

10% 35.15±3.31 41.92±1.12 41.78±3.80 41.96±3.84 42.73±3.32 48.60±3.84

15% 49.69±2.44 58.56±1.17 60.55±3.99 61.11±5.67 61.23±4.08 67.70±3.68

20% 59.96±3.24 66.59±3.02 68.33±4.26 69.56±3.76 69.75±3.33 74.98±3.01

25% 65.73±3.40 71.94±1.23 74.02±3.54 75.67±3.50 76.89±2.30 79.09±2.13

30% 71.66±2.75 75.28±1.80 78.73±3.04 79.83±2.10 79.38±2.82 83.01±2.23

35% 75.62±2.90 78.25±1.14 81.92±2.61 82.84±2.77 83.14±2.76* 85.31±1.82

40% 78.02±3.32 79.97±1.09 82.94±2.40 84.42±1.81 84.42±2.53* 86.39±1.93

Handwritten

10% 95.14±0.98 96.30±1.29 97.61±0.88* 97.63±0.81 97.56±0.80* 97.60±0.61*

15% 96.17±0.91 97.40±1.46 97.96±0.62* 98.06±0.46 97.90±0.82* 97.79±0.55*

20% 96.36±1.08 97.65±1.54 98.10±0.50* 98.16±0.55* 98.21±0.72 97.84±0.70*

25% 96.69±0.93 97.70±1.04 97.99±0.50* 98.06±0.47* 98.08±0.64 98.00±0.60*

30% 96.86±0.80 97.62±0.97* 97.93±0.53* 97.99±0.51* 97.94±0.68* 98.01±0.82

35% 96.74±0.71 97.55±1.17* 97.88±0.50* 97.88±0.70* 97.90±0.78* 97.97±0.84

40% 96.89±0.65 97.65±0.95* 97.84±0.57* 97.90±0.50* 97.81±0.57* 97.92±0.56

SCENE

10% 48.16±2.76 49.41±2.10 49.61±1.70 50.03±2.37* 50.61±2.32* 51.97±2.38

15% 45.78±2.11 47.14±1.62 47.45±1.84 47.58±1.55 48.18±0.55* 48.94±1.54

20% 44.70±3.06 44.93±1.91 44.98±1.69 45.09±1.42 45.37±2.27* 45.89±1.99

25% 41.47±2.26 42.36±2.00 42.75±1.33 42.81±2.03 43.55±0.95 44.53±1.29

30% 37.89±3.01 38.27±1.46 38.64±2.24 38.98±1.60 39.98±1.25 39.69±2.06*

35% 34.43±2.72 34.57±2.40 34.64±2.69 34.67±1.98 35.06±1.12* 35.54±1.61

40% 31.45±3.18 31.71±1.82 31.78±2.25 31.97±1.93 32.55±1.45* 32.96±2.03

COIL100

10% 62.99±1.31 67.17±1.89 88.10±0.86 88.49±1.26* 88.45±1.09* 88.85±1.07

15% 68.58±1.13 74.61±1.00 95.61±0.55 95.87±0.49 95.84±0.51* 96.24±0.49

20% 70.24±0.93 76.74±1.57 94.88±0.51 95.14±0.50 95.28±0.67* 95.76±0.44

25% 71.15±1.30 78.03±1.28 93.76±0.42 94.30±0.75 94.68±0.69 95.24±0.38

30% 73.51±1.17 79.43±1.97 92.28±0.45 92.86±0.74 93.71±0.86* 94.02±0.51

35% 74.51±1.02 80.76±2.38 90.79±0.53 91.52±0.91 92.88±1.08 92.68±0.86*

40% 74.53±1.08 81.60±1.93 89.72±0.78 90.47±1.07 92.28±1.25 91.74±0.82*

ALOI

10% 49.10±2.32 66.16±4.45 65.50±2.29 69.04±2.16 69.95±1.93 77.29±2.41

15% 66.47±6.12 80.91±1.48 79.43±2.90 80.07±2.12 86.29±1.65* 87.16±1.15

20% 78.67±2.74 85.85±1.22 86.15±1.55 85.70±1.61 89.99±1.02 89.64±1.11*

25% 80.66±2.42 89.03±0.90 90.88±0.80 90.81±0.80 91.70±1.02 91.42±1.44*

30% 83.19±2.28 90.79±0.84 92.42±0.76 92.43±0.85* 93.00±0.91 92.55±1.01*

35% 84.92±2.23 91.72±0.89 93.18±0.83* 93.24±0.84* 93.39±0.81 92.97±0.77*

40% 86.00±1.95 91.97±0.90 93.42±0.78* 93.46±0.85* 93.47±0.77 93.25±0.92*

NUS-WIDE

10% 40.68±1.43 42.51±1.12 45.80±0.82 46.15±0.88* 45.45±0.89 46.48±0.97

15% 44.58±1.34 44.88±2.70 47.13±0.91 47.95±0.80 47.29±0.79 48.49±0.81

20% 46.03±0.78 46.26±1.88 47.32±0.87 48.40±1.02* 47.70±0.98 48.85±0.88

25% 46.81±1.08 47.02±2.67 47.76±0.93 48.76±0.98* 48.10±0.86 48.87±0.80

30% 47.56±0.81 47.63±1.93 47.80±0.89 48.85±1.07* 48.50±0.78* 49.17±0.82

35% 47.80±0.78 48.12±1.47 47.83±0.83 48.63±0.89* 48.48±0.76* 49.09±0.91

40% 47.82±1.10 47.82±1.11 47.91±0.64 48.28±0.77* 48.39±0.86* 48.97±0.80

MNIST

10% 69.81±1.63 70.08±1.23 OM OM OM 78.89±0.48

15% 73.45±1.18 74.37±1.75 OM OM OM 79.79±0.44

20% 74.63±1.19 75.89±1.39 OM OM OM 79.87±0.41

25% 75.33±1.04 76.10±2.73 OM OM OM 79.77±0.48

30% 76.30±1.07 77.14±1.80 OM OM OM 79.53±0.53

35% 76.25±1.40 77.99±1.03 OM OM OM 79.06±0.62

40% 76.01±1.44 78.05±1.11* OM OM OM 78.71±0.76

feature space are lesser than 𝐶𝐷, SMFS encounters the out-of-memory error on the large-scale dataset (i.e., MNIST). Generally, 
the statistical significance test shows that the proposed EMSFS achieves pretty sound improvements in multi-view semi-supervised 
feature selection.

Meanwhile, we present the running times of each method on eight datasets in Fig. 3 to assess the efficiency of EMSFS. As shown 
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in Fig. 3, the running time of EMSFS exhibits a linear increase with respect to the training data size, validating that the learned 
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Table 5

Results (ACC± STD%) on the testing data with different numbers of labeled samples. The best results are in bold, “OM” denotes an out-of-memory error and * denotes 
the results are not significantly worse than the best using the paired t-test at the 5% significance level.

Datasets Labeled ratio MSFS FSSLL MLSFS MASFS SMFS EMSFS

COIL20

10% 94.55±1.21 95.97±1.15 96.18±1.78* 96.28±1.27* 96.35±1.08* 96.46±1.26

20% 97.12±0.70 97.85±0.94 98.26±0.54 98.61±1.27* 98.56±0.40* 98.78±0.47

30% 98.47±0.87 98.65±1.08 99.27±0.39 99.34±0.61* 99.51±0.38* 99.59±0.34

40% 98.99±0.68 99.13±0.41 99.31±0.57 99.58±0.34 99.76±0.22* 99.83±0.15

Leaves

10% 42.50±2.56 44.81±1.23 45.98±5.81 45.98±5.60 47.14±3.73 46.75±3.47*

20% 65.02±3.25 68.12±4.93 70.05±3.81 72.47±3.84* 70.83±3.32 72.94±2.57

30% 65.73±3.40 71.94±1.23 74.02±3.54 75.67±3.50 76.89±2.30 79.09±2.13

40% 70.41±3.28 73.87±4.33 75.00±4.70 75.97±2.56 76.44±2.83 79.72±2.79

Handwritten

10% 88.75±1.92 92.89±0.90 93.35±1.38 94.47±1.45* 94.83±1.34* 94.94±1.39

20% 95.50±1.38 96.52±1.24 97.26±0.80* 97.53±0.69* 97.58±1.34* 97.71±0.66

30% 96.69±0.93 97.70±1.04 97.99±0.50* 98.06±0.47* 98.08±0.64 98.00±0.60*

40% 97.03±0.74 97.68±0.86 98.28±0.60* 98.28±0.56* 98.42±0.59* 98.44±0.41

SCENE

10% 24.14±2.64 25.61±2.18 26.95±1.64 27.30±1.36 30.49±1.25 32.48±2.25

20% 32.51±1.98 33.10±2.26 33.85±1.92* 34.05±2.45* 34.44±2.92* 34.68±1.64

30% 41.47±2.26 42.36±2.00 42.75±1.33 42.81±2.03 43.55±0.95 44.53±1.29

40% 44.50±2.59 44.50±2.30 46.48±0.80 46.00±1.63 46.67±1.72 47.74±1.57

COIL100

10% 63.42±2.90 70.65±2.80 88.63±2.51 88.50±1.78 88.45±2.60 89.78±1.18

20% 68.53±1.84 75.59±1.60 92.15±1.50 93.05±1.51* 93.31±1.58* 93.85±0.86

30% 71.15±1.30 78.03±1.28 93.76±0.42 94.30±0.75 94.68±0.69 95.24±0.38

40% 72.54±1.34 79.61±1.65 94.50±0.66 94.97±0.70* 95.14±0.74* 95.39±0.56

ALOI

10% 73.29±1.86 87.75±1.38 88.37±1.22 89.40±1.20* 88.08±2.11 89.92±1.34

20% 83.99±1.69 89.15±1.16 89.83±0.91 90.45±0.88 91.17±0.86 90.71±1.40*

30% 80.66±2.42 89.03±0.90 90.88±0.80 90.81±0.80 91.70±1.02 91.42±1.44*

40% 84.22±2.52 89.66±1.12 90.73±0.82 89.92±1.10 91.70±0.91* 92.65±0.89

NUS-WIDE

10% 40.38±1.18 41.53±2.67 41.73±1.11 41.59±0.88* 41.27±1.29* 41.70±0.84*

20% 44.45±0.88 45.02±1.04 45.25±1.05 46.21±1.16* 46.35±0.95* 46.68±0.81

30% 46.81±1.08 47.02±2.67 47.76±0.93 48.76±0.98* 48.10±0.86 48.87±0.80

40% 48.18±0.90 48.43±0.70 48.72±0.67 49.63±0.70* 49.56±0.95* 49.87±0.86

MNIST

1% 63.22±4.10 64.46±2.71 OM OM OM 68.73±2.61

2% 72.77±2.09 74.67±2.35 OM OM OM 77.48±0.71

3% 75.33±1.04 76.10±2.73 OM OM OM 79.77±0.48

4% 77.67±2.18 78.37±1.64 OM OM OM 80.65±0.42

bipartite graph can effectively improve the computational efficiency of EMSFS and make it scalable to relatively large-scale data. 
Specifically, other multi-view feature selection methods that involve the inverse operations of high-order matrices (i.e., MASFS, 
MLSFS, and SMFS) emerge exponentially increasing running times with the increase of training data sizes. Moreover, these methods 
encounter the out-of-memory error when applied to the MNIST dataset. Although the single-view feature selection method (i.e., 
FSSLL) can deal with the MNIST, it shows worse classification performance and costs more running time than EMSFS. These results 
fully demonstrate that EMSFS is not only effective in achieving superior classification accuracy but also efficient in exploiting the 
similarity relationships in the projected feature subspace to learn a bipartite graph that is compatible across views.

4.3. The analysis for EMSFS

4.3.1. Effect of anchor points’ number

Section 3.2 provides the computational complexity analysis, revealing that the number of anchors 𝑚 has a direct impact on 
EMSFS. To investigate the effects of anchors on classification accuracy and running time, we conduct experiments with different 
numbers of anchors, with the results recorded in Fig. 4. Specifically, we varied the numbers of anchors from {1%, 2%, ⋯ , 9%} × 𝑛 on 
the NUS-WIDE and {0.2%, 0.4%, ⋯ , 1.8%} × 𝑛 on the MNIST. The findings show that, as the number of anchors increases, the running 
time on each dataset grows steadily (shown in Figs. 4 (a) and (c)). However, there is only a slight change in the accuracy (shown in 
Figs. 4 (b) and (d)), demonstrating that it might not be effective for EMSFS to use more anchors. Therefore, to ensure effectiveness 
and efficiency, we should generate a proper number of anchors to maintain accuracy without significantly increased time.

4.3.2. Ablation study

In this section, we conduct an ablation study from two perspectives. We first introduce a simplified version of the proposed 
EMSFS, named EMSFS1, which sets {𝛼𝑣 = 1∕𝑉 }𝑉

𝑣=1 and removes the procedures for adaptively updating {𝛼𝑣}𝑉𝑣=1. We then obtain 
another simplified version of EMSFS, named EMSFS2, which uses a fixed graph (e.g., 𝐒 = ∑𝑉

𝑣=1 𝐒𝑣∕𝑉 ) during feature selection. 
11

The experimental results on testing data with varying proportions of labeled samples are presented in Fig. 5. Our findings reveal 
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Fig. 2. The Friedman test for the performance of EMSFS and other multi-view semi-supervised feature selection methods. The dots denote the average ranks, the blue 
bars indicate the critical value with the post-hoc tests at a 5% significance level, and the methods having non-overlapped bars are significantly inferior to EMSFS.

Fig. 3. Running time versus the number of training samples (i.e. 𝑛 = 𝑇×ratio%).

that EMSFS outperforms its two simplified versions, suggesting that discriminating different feature projections and adaptive graph 
learning are crucial in enhancing the performance of multi-view feature selection.

4.3.3. Robustness against noisy features (views)

To investigate the robustness of EMSFS against noise, we conduct experiments on the Leaves𝑛𝑜𝑖𝑠𝑒 dataset, which includes three 
normal views from the Leaves dataset and one view with 64 Gaussian noise features. Figs. 6(a) and 6(b) illustrate the comparison 
12

results of EMSFS on the Leaves and Leaves𝑛𝑜𝑖𝑠𝑒 with varying numbers of selected features. It can be observed that the performance 
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Fig. 4. Accuracy and running time versus the number of anchors (i.e. 𝑚 = 𝑛×ratio%), in which (a) and (b) show the results on the NUS-WIDE, and (c) and (d) on the 
MNIST.

Fig. 5. Results of EMSFS, EMSFS1 and EMSFS2 on testing samples.

Fig. 6. The results of robustness analysis on Leaves and Leaves𝑛𝑜𝑖𝑠𝑒 datasets, in which (a) and (b) represent the performance with 20% and 30% labeled samples, 
respectively.

of EMSFS on the Leaves𝑛𝑜𝑖𝑠𝑒 has a slight decrease when comparing the performance on the Leaves, indicating that EMSFS has better 
robustness against noisy features. Accordingly, Fig. 7 further shows the view weights after each iteration on the Leaves𝑛𝑜𝑖𝑠𝑒. We find 
that the weight of view4 decreases significantly in the initial iterations and gradually tends to be zero after several iterations. These 
13

results demonstrate that EMSFS can effectively identify the noisy views and assigns fewer view weights to them, thereby reducing 
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Fig. 7. The view weight curves versus the number of iterations on the Leaves𝑛𝑜𝑖𝑠𝑒 dataset.

Fig. 8. Visualization on the Leaves dataset, in which (a), (b) and (c) show the t-SNE visualization results of three views, and (d) shows the visualization of the selected 
features.

the interference of the features in the noisy views. Therefore, EMSFS is effective and robust for multi-view feature selection in the 
presence of noise.

4.3.4. Visualization

To intuitively confirm the effectiveness of selected features, the t-SNE method is employed to visualize the high-dimensional 
feature space in a two-dimensional space [45]. For convenience, we only select the 320 samples from 20 categories of Leaves 
14

for visualization, in which each sample has three views (denoted as View1, View2, and View3) and each view has 64 relevant 
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Fig. 9. Accuracy with different parameters on the Leaves, NUS-WIDE and MNIST.

features. For a fair comparison, the number of selected features is set as 64. The original features of different views are respectively 
visualized in Figs. 8 (a)-(c), and the selected features are visualized in Fig. 8 (d). As depicted in Fig. 8, there are different degrees of 
overlaps between different categories of samples in the original feature space, while the visualization results of the selected features 
outperform those of the original features. Specifically, we can find that samples from different classes are effectively separated in 
Fig. 8 (d), and the inter-class distances can be enlarged by the feature subset selected by EMSFS. This result fully validates that 
EMSFS can select informative and discriminative features that facilitate the subsequent classification task.

4.3.5. Parameter sensitivity and convergence analysis

In the proposed EMSFS method, there are three parameters 𝜆, 𝛾 and 𝛽 that need to be determined. Specifically, the parameter 
𝜆 balances the regression loss and the sparsity of the feature projection matrices {𝑾 𝑣}𝑉𝑣=1. In the Eq. (15), we can observe that 
using larger 𝜆 to minimize the problem can make the rows of learned feature projections sparser. The parameter 𝛾 controls the 
smoothness of the predicted label matrix, making neighbor samples share similar labels. The parameter 𝛽 balances the importance 
of the graph learning that facilitates the label propagation on the learned graph. To analyze the influence of these parameters on the 
performance, we vary one parameter and the ratio of selected features by fixing other regularization parameters. Due to the space 
limitation, Fig. 9 illustrates the parameter sensitivity of EMSFS on the Leaves, NUS-WIDE and MNIST datasets. The results indicate 
that parameter determination takes an impact on the performance of the proposed EMSFS. Specifically, EMSFS is somewhat sensitive 
15

to 𝜆, 𝛾 and 𝛽 when the number of selected features is small. As the number of selected features increases, EMSFS can produce 
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Fig. 10. Variation curves of objective function values.

satisfactory results with 𝛾 = 1, demonstrating that the discriminative features are selected. Moreover, EMSFS exhibits low sensitivity 
to the parameters (i.e., 𝜆 and 𝛽) and achieves better performance with varying 𝜆 and 𝛽 from {10−1, 100, 101}. This indicates that the 
terms of sparse projection learning and graph learning play significant roles in identifying informative features. Secondly, to validate 
the convergence of EMSFS, Fig. 10 displays the variation curves of the objective function over the number of iterations. From the 
results in Fig. 10, we find that the objective function decreases rapidly in the first iteration and converges within a few iterations, 
16

experimentally validating that the optimization strategy is effective and efficient.
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5. Conclusion and future work

In this paper, we propose an efficient multi-view semi-supervised feature selection method (EMSFS). Unlike traditional methods 
that construct a graph to mine the similarity structure among all samples, the proposed EMSFS adaptively learns a bipartite graph 
between training samples and generated anchors, effectively reducing the computation cost of graph construction. Moreover, we 
employ matrix transformation skillfully to avoid the inverse operation of high-order matrices. Therefore, the computational com-

plexity of EMSFS is linear to the number of training samples 𝑛, enhancing its scalability on large-scale data. Furthermore, EMSFS 
alternates between bipartite graph learning and feature selection, improving the effectiveness of the learned graph and selected 
features. Extensive experiments demonstrate the effectiveness and the superiority of our proposed EMSFS.

Although achieving superior performance to the state-of-the-art methods, the proposed EMSFS can be further improved and gen-

eralized. First, although the proposed EMSFS can assign appropriate weights to different views, it cannot completely remove the 
adverse impacts of poor views. A straightforward solution is to use the learned weights {𝛼𝑣}𝑉𝑣=1 to quantify the contribution of each 
view and thus eliminate the views with small weights in the training process. Specifically, we can set a threshold 𝛼𝑚𝑖𝑛 for the view 
weights, then the 𝑣-th view will be removed from the current model if 𝛼𝑣 ⩽ 𝛼𝑚𝑖𝑛. However, this manner excessively emphasizes the 
distinctions among views but neglects the correlations between different views, resulting in performance degradation. Therefore, 
effectively selecting an optimal view subset remains an important direction for improvement. Moreover, EMSFS performs feature se-

lection by imposing an 𝑙2,1-norm regularization on feature projection matrices. Considering the advantage of 𝑙2,0-norm regularization 
that can directly select the relevant features without the extra sorting feature procedure as well as the regularization parameter, we 
plan to extend EMSFS by replacing the 𝑙2,1-norm regularization with 𝑙2,0-norm regularization in the feature. Additionally, it can be 
considered to automatically generate anchor points for each dataset in the training phase to further enhance performance.
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