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A B S T R A C T

A fundamental concern on the robustness of hypergraphs lies in comprehending how the failure of individual
nodes affects the hyperedges they are associated with. To address the issue, we propose a simple but novel
percolation model that takes into account the dependency of hyperedges on their internal nodes, where the
failure of a single node can lead to the dissolution of its associated hyperedge with a probability 𝛽. Based
on a newly proposed analytical method of percolation theory on hypergraphs, our research reveals that the
impact of mean cardinality on the system robustness varies with 𝛽. For a large value of 𝛽, a larger mean
cardinality increases the fragility of hypergraphs, while for a small 𝛽, a larger mean cardinality enhances the
robustness of hypergraphs. Additionally, our research uncovers divergent effects of hyperdegree distribution
on system robustness between monolayer and double-layer hypergraphs. Specifically, monolayer hypergraphs
with scale-free hyperdegree distribution exhibit higher robustness, while Poisson hyperdegree distributions
lead to stronger robustness in double-layer hypergraphs. These findings provide valuable insights into the
robustness of hypergraphs and its dependency on hyperdegree distributions and mean cardinality, contributing
to a more comprehensive understanding of the complexities of robustness in complex systems. Furthermore,
the development of the percolation model enriches our understanding of node-hyperedge interactions within
complex systems.
1. Introduction

Traditional percolation models, such as bond percolation [1,2] or
site percolation [3,4] on graphs or networks, have played a crucial role
in studying the emergence of collective behaviors in various systems [5,
6]. These models have provided valuable insights into the formation
of giant connected components and phase transitions in networked
systems [7,8]. However, real-world networks often exhibit complex re-
lationships and dependencies that go beyond pairwise connections [9–
15]. This limitation restricts the ability of traditional networks to
capture the rich higher-order interactions and dynamics of real-world
systems.

To address this limitation, hypergraphs offer a more comprehensive
representation of complex systems by capturing higher-order inter-
actions and dependencies [10,16–18]. This is due to the fact that
hyperedges of a hypergraph can connect more than two nodes, al-
lowing for a more flexible and expressive modeling framework. For
instance, in social networks, hypergraphs can capture group interac-
tions [19,20], collaborations [21,22], and communities [23–25] more
effectively. In biological networks, hypergraphs can represent protein-
protein interactions involving multiple proteins simultaneously [26–
28]. In transportation networks, hypergraphs can model traffic flows
and interdependencies among different modes of transportation [29–
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33]. Similarly, multilayer networks also provide a valuable representa-
tion of the multiple nature of interactions in complex systems [34,35],
which also offers an important framework for capturing the interactions
beyond pairwise. Multilayer networks encompass various real-world
examples, such as cyber-physical systems [36–38], social systems [39–
41], and multilayer traffic networks [42–44].

The robustness of complex systems with higher-order interactions
has attracted great attention. One of the most direct approaches to
studying the robustness of hypergraphs is through percolation theory,
wherein researchers investigate the emergence threshold of the giant
component formed by the remaining nodes after the removal of a
fraction of nodes [45,46]. These studies have revealed that factors
such as the attack strategies [46,47] and degree correlations [48]
significantly influence the percolation threshold and robustness of the
hypergraph. Moreover, there are some works aimed to understand
the dynamics of cascading failures in complex systems under higher-
order interactions by modeling coupling mechanisms among nodes in
hypergraphs [49,50], coupling between network layers [10] and core
percolation on hypergraphs [51].

In addition, over the past decade, the robustness of multilayer net-
works has been extensively examined through the percolation theory.
960-0779/© 2023 Elsevier Ltd. All rights reserved.
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Such investigations have disclosed that node failures within multilayer
networks can propagate not only within the individual layers but also
across different layers, thereby rendering multilayer networks highly
susceptible to discontinuous phase transitions [6,52–54]. Furthermore,
it has been discovered that specific topological features and inter-layer
coupling characteristics significantly influence the network’s robust-
ness, enabling the transition from discontinuous to continuous phase
transitions and consequently enhancing its resilience [55–57].

In both monolayer and multilayer networks, higher-order interac-
tions are prevalent and exert a significant influence on system robust-
ness. However, much of the current research implicitly assumes that
hyperedges lose their functionality only when they fail to connect two
or more nodes. This assumption does not align with real-world observa-
tions. In practical scenarios, the departure of a few critical members can
trigger the dissolution of entire groups, such as in social communities
or collaboration groups. Similarly, in specific infrastructures composed
of multiple components, the failure of one or a few components can
lead to the malfunction of the entire module. This phenomenon persists
when more systems are coupled together to form multilayer networks,
as seen in cyber-physical systems, where many power nodes are parallel
for electricity generation, forming a collaborative group. The failure
of a few nodes can lead to the dissolution of the entire collaborative
group, causing partial node failures in the information network. When
considering the dependency mechanism of hyperedges on their internal
nodes, in the case of monolayer networks, the failure of one or a
few nodes within a hyperedge can result in the disintegration of that
hyperedge. This, in turn, can cause more nodes in the network to fail,
making the system more vulnerable compared to scenarios where this
mechanism is not considered. In the context of multilayer networks,
node failures not only propagate within a network layer through this
mechanism but also, due to the interdependence of nodes across dif-
ferent network layers, can trigger cascading failures that spread across
various layers. Consequently, without accounting for the dependency
mechanism of hyperedges on their internal nodes, the robustness of the
system may be overestimated. However, the dependency mechanism
of hyperedges on their internal nodes has received limited attention in
previous studies on the robustness of both monolayer and multilayer
networks. Therefore, exploring the impact of this mechanism on the
robustness or cascading dynamics of complex systems is crucial for both
monolayer and multilayer networks. This exploration will enable us to
more accurately assess the robustness of real-world complex systems.

In order to investigate the impact of the dependency mechanism
of hyperedges on their internal nodes regarding system robustness, we
propose a simple percolation model by introducing a tunable model
parameter, denoted as 𝛽, to control the impact of node failures on the
yperedges. Specifically, when a node fails, the hyperedge it belongs to
ails with a probability of 𝛽 and is retained with a probability of 1 − 𝛽.
his adjustable parameter allows us to investigate the varying degrees
f influence that individual node failures have on the integrity and
ersistence of hyperedges in the complex system. Through a compre-
ensive analysis of the proposed model, we aim to unveil key insights
nto the behavior of complex systems with higher-order interdepen-
encies. Our findings reveal important differences between monolayer
ypergraphs and double-layer hypergraphs in terms of fragility and
hase transitions. Specifically, double-layer hypergraphs consistently
xhibit higher fragility compared to monolayer hypergraphs, suggest-
ng that the presence of interdependencies across layers amplifies the
ulnerability of complex systems. Interestingly, the impact of hyper-
egree distribution on system robustness differs between monolayer
ypergraphs and double-layer hypergraphs. In monolayer hypergraphs,
power-law hyperdegree distribution increases robustness, whereas,

n double-layer hypergraphs, it enhances fragility. This discrepancy
ighlights the intricate relationship between hyperdegree distribution
nd system resilience in different hypergraph types. Additionally, we
dentify a contrasting effect of mean hyperdegree and mean cardinality
2

n system robustness. A higher mean hyperdegree enhances system W
esilience, while this effect does not hold for mean cardinalities. Specif-
cally, when 𝛽 is large, a larger mean cardinality leads to increased
ragility in the network. Conversely, when 𝛽 is small, a larger mean
ardinality enhances network robustness. These findings underscore the
mportance of considering the specific characteristics of hypergraphs
hen assessing and designing robust systems.

The paper is structured as follows. In Section 2, we present the
ercolation model of hypergraphs with the dependence of hyperedge
n its internal nodes for both Poisson and power-law hyperdegree
istributions. In Section 3, we discuss the cascading failure process
n the double-layer hypergraph with the dependence of hyperedge
n its internal nodes for both Poisson and power-law hyperdegree
istributions. In Section 4, we provide the concluding remarks.

. Percolation on random hypergraphs

.1. Random hypergraph model

Consider a random hypergraph 𝐻(𝑉 ,𝐸) composed of a set of 𝑁
odes, denoted as 𝑉 , and a set of 𝑀 hyperedges, denoted as 𝐸. Each
yperedge has a distinct cardinality 𝑚, i.e., the number of nodes

contained in the hyperedge, that follows a distribution 𝑄(𝑚). The hy-
erdegree 𝑘 of a node is defined as the number of hyperedges incident
o that node, and the distribution of hyperdegrees is represented by
(𝑘). In this paper, we make the simple assumption that the cardi-
ality distribution of hyperedges follows a Poisson distribution with a
ean value of ⟨𝑚⟩. As for the node hyperdegree distribution, we will

eparately consider two scenarios: Poisson distribution and power-law
istribution.

At the outset, each node in the hypergraph is assigned a failure
robability denoted by 𝑞, calculated as 𝑞 = 1 − 𝑝, where 𝑝 signifies
he node retention probability and lies between the range of 0 to 1.
dditionally, we introduce 𝛽 = 1 − 𝛼 as the probability of hyperedge

ailure in case a node within that hyperedge is removed. Here, 𝛼 stands
or the probability of hyperedge preservation if one of its internal nodes
ails and varies from 0 to 1. In this context, 𝛽 controls the dependency
trength of a hyperedge on its internal nodes. Exactly, as 𝛽 approaches
, the dependency of a hyperedge on its internal nodes is weakest. In
his scenario, unless all nodes within the hyperedge fail, the failures
f a subset of nodes will not cause the hyperedge to collapse. On the
ther hand, as 𝛽 tends towards 1, the dependency of a hyperedge on
ts nodes becomes strongest. The failure of any single node will lead to
he dissolution of the entire hyperedge. Under this mechanism, when a
raction of nodes is removed, some hyperedges will also disrupt. The
ailure process of the random hypergraph can be illustrated in Fig. 1.
ur main focus is to investigate the relative size of the giant component

n the system, denoted as 𝑆 = 𝐺∕𝑁 , where 𝐺 represents the size of
he giant component. At the same time, we also pay attention to the
ritical point 𝑞𝑐 at which the giant component vanishes in the system.
his critical point serves as a metric for the robustness of a system.
pecifically, when 𝑞𝑐 is large, it implies that the giant component can
e destroyed by removing a sufficient fraction of nodes, indicating
tronger system robustness. Conversely, when 𝑞𝑐 is small, it implies that
emoving a small fraction of nodes can devastate the giant component,
ndicating poorer system robustness.

We address the percolation problem on hypergraphs with depen-
encies of hyperedges on its internal nodes by using the generat-
ng function method. Firstly, we introduce two generating functions:
0(𝑥) =

∑

𝑘=0 𝑃 (𝑘)𝑥𝑘 generates the hyperdegree distribution of nodes
nd 𝐺1(𝑥) =

∑

𝑘=1 𝑘𝑃 (𝑘)∕⟨𝑘⟩𝑥𝑘−1 generates excess hyperdegree distri-
ution of a random node in a hyperedge.

To determine the order parameter 𝑆, we introduce an auxiliary
arameter 𝑅, representing the probability that a randomly chosen
yperedge, reached by a random node, belongs to the giant component.

hen selecting a random hyperedge through this random node, a



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 177 (2023) 114246R.-R. Liu et al.

o
t

n
h
d
h
g
h

t
e

𝑆

ℎ

w

ℎ

Fig. 1. The illustration demonstrates the failure process on a hypergraph comprising 5 hyperedges, namely 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, and 9 vertices, denoted by indices 1 to 9. (a) The
riginal hypergraph is depicted without any attacks or failures; (b) Initially, we start by removing nodes 3 and 9; (c) It can be observed that the failure of node 3 and 9 has led
o the malfunction of hyperedges 𝑒3 and 𝑒5, respectively.
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Fig. 2. The graphical representation of Eq. (4) is shown for different fractions 𝑞 of
nodes initially removed. The graph illustrates the results of a monolayer hypergraph
with 𝛽 = 0.4. Both the hyperdegree distribution and cardinality distribution of the
hypergraph follow Poisson distributions with ⟨𝑚⟩ = 4 and ⟨𝑘⟩ = 2, respectively.

hyperedge with a larger cardinality is more likely to be selected. There-
fore, the probability of randomly selecting a hyperedge with cardinality
𝑚 is proportional to the product of its probability 𝑄(𝑚) and its cardi-
nality 𝑚, and the probability therefore can be calculated as 𝑄(𝑚)𝑚∕⟨𝑚⟩.
Further, excluding the randomly chosen node, the probability that the
reached hyperedge still survives when 𝑛 nodes fail among the 𝑚 − 1
odes, can be expressed as (1 − 𝛽)𝑛

(𝑚−1
𝑛

)

(1 − 𝑞)𝑚−1−𝑛𝑞𝑛. Since the excess
yperdegree distribution of a random node is generated by 𝐺1(𝑥), the
istribution of the number of hyperedges that the randomly chosen
yperedge can connect to through these remaining 𝑚−1−𝑛 nodes can be
iven by the generating function 𝐺𝑚−1−𝑛

1 (𝑥). Thus, the probability of this
yperedge being connected to the giant component is 1−𝐺𝑚−1−𝑛

1 (1−𝑅).
By the above considerations, the auxiliary parameter 𝑅 can be obtained
as

𝑅 =
∑

𝑚

𝑚𝑄(𝑚)
⟨𝑚⟩

𝑚−1
∑

𝑛=0
(1−𝛽)𝑛

[

1−𝐺𝑚−1−𝑛
1 (1−𝑅)

]

(

𝑚 − 1
𝑛

)

(1−𝑞)𝑚−1−𝑛𝑞𝑛. (1)

Since the probability that a randomly chosen node cannot reach
he giant component is 𝐺0(1 − 𝑅), then the order parameter 𝑆 can be
xpressed as

= (1 − 𝑞)
[

1 − 𝐺0(1 − 𝑅)
]

. (2)

To solve 𝑅, we here define the following equation

(𝑞, 𝑅) = 0 (3)

ith the function defined as

(𝑞, 𝑅) =
∑

𝑚

𝑚𝑄(𝑚)
⟨𝑚⟩

𝑚−1
∑

𝑛=0
(1 − 𝛽)𝑛

[

1 − 𝐺𝑚−1−𝑛
1 (1 − 𝑅)

]

(

𝑚 − 1
𝑛

)

× (1 − 𝑞)𝑚−1−𝑛𝑞𝑛 − 𝑅. (4)
3

As shown in Fig. 2, when the function curve is tangent with the
𝑅-axis, a nontrivial solution of 𝑅 emerges, and thus the critical value
of 𝑞𝐼𝐼𝑐 can be obtained by

𝜕𝑅ℎ(𝑞𝐼𝐼𝑐 , 0) = 0. (5)

Thus, we can get

(1 − 𝑞𝐼𝐼𝑐 )𝐺′
1(1)

∑

𝑚

𝑚𝑄(𝑚)
⟨𝑚⟩

(𝑚 − 1)
[

1 − 𝑞𝐼𝐼𝑐 + (1 − 𝛽)𝑞𝐼𝐼𝑐
]𝑚−2

= 1. (6)

Our theoretical framework also provides a more concise and elegant
solution to the percolation problem on hypergraphs. If 𝛽 = 0, our model
reduces to the case of ordinary percolation on hypergraphs. According
to Eq. (6), we can get

𝑞𝐼𝐼𝑐 = 1 −
⟨𝑚⟩

⟨𝑚(𝑚 − 1)⟩𝐺′
1(1)

. (7)

his result is consistent with the findings reported in [10].
Since cardinality 𝑚 follows Poisson distribution (i.e., 𝑄(𝑚) =

𝑒−⟨𝑚⟩⟨𝑚⟩𝑚

𝑚! ), based on Eq. (6), we can further obtain

𝑚⟩𝐺′
1(1)(1 − 𝑞𝐼𝐼𝑐 )𝑒−⟨𝑚⟩𝛽𝑞

𝐼𝐼
𝑐 = 1. (8)

By substituting the parameters 𝛽 = 0.4, ⟨𝑚⟩ = 4 and ⟨𝑘⟩ = 2 into
q. (8), we can estimate the critical value 𝑞𝐼𝐼𝑐 to be approximately
.648. This calculation provides an estimation of the threshold value
t which a second-order phase transition occurs in the hypergraph. The
onfirmation of this critical value can be done by referring to Fig. 2.

.2. Poisson degree distribution

We first consider the case of a Poisson hyperdegree distribution
(𝑘) = 𝑒−⟨𝑘⟩⟨𝑘⟩𝑘

𝑘! , with ⟨𝑘⟩ representing the mean hyperdegree. In this
scenario, as the model parameter 𝛽 increases, the system becomes more
fragile and leads to an decrease in the critical point 𝑞𝐼𝐼𝑐 , indicating that
the system becomes more susceptible to initial failures as the increased
dependence of hyperedges on its internal nodes, which is illustrated
by the phase diagram in Fig. 3(a–b). To confirm the position of the
critical point 𝑞𝐼𝐼𝑐 , we plot several cross-sections of the phase diagram
at different values of 𝛽 in Fig. 3(c), and analyze the function curves
f susceptibility 𝜒 versus 𝑞 for different 𝛽 in Fig. 3(d), where the

susceptibility is calculated as 𝜒 = ⟨𝐺2
⟩−⟨𝐺⟩

2

⟨𝐺⟩

. It can be observed that
𝜒 peaks at the point where the giant component disappears. These
results indicate that the model parameter 𝛽 has a monotonous effect
on the robustness of the hypergraph, meaning that a larger 𝛽 leads
to poorer system robustness. Additionally, we observe a high level of
consistency between our simulation results and theoretical findings,
providing further validation of the accuracy of our theory.

2.3. Power-law hyperdegree distribution

We next consider the case where the hyperdegree distribution fol-
lows a scale-free power law, represented by 𝑃 (𝑘) = 𝐶𝑘−𝛾 within the
range 𝑘 ≤ 𝑘 ≤ 𝑘 . Here, 𝑘 and 𝑘 denote the lower and upper
𝑚𝑖𝑛 𝑚𝑎𝑥 𝑚𝑖𝑛 𝑚𝑎𝑥
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Fig. 3. Percolation transition on random hypergraphs. Panels (a) and (b) illustrate the simulated and theoretical phase diagrams for percolation transitions on random hypergraphs
with ⟨𝑚⟩ = 4 and ⟨𝑘⟩ = 4 respectively, where the dotted line outlines the theoretical percolation transition point 𝑞𝐼𝐼𝑐 . In (c), cross-sections of the phase diagram are depicted,
illustrating 𝑆 versus 𝑞 for different 𝛽. Symbols represent simulation data, and dotted lines represent theoretical predictions. Panel (d) displays the corresponding susceptibility 𝜒
from simulations. The simulation results are obtained from 50 independent runs, and the hypergraph size is 𝑁 = 105.
bounds of the hyperdegree distribution, respectively, and 𝛾 represents
the power coefficient. Comparing this case to the Poisson distribution,
we also observe that the hypergraph also disintegrates as a second-
order phase transition with the susceptibility 𝜒 reaching its peak at the
percolation point, as shown in Fig. 4.

Under the same average hyperdegree, average cardinality, and 𝛽,
hypergraphs with a power-law hyperdegree distribution demonstrate
higher robustness compared to those with a Poisson distribution. This
can be observed by comparing Figs. 3 and 4, where scale-free hyper-
graphs consistently have a larger 𝑞𝑐 for the same 𝛽. This suggests that a
hypergraph with a power-law structure, characterized by hubs or highly
connected nodes, is more robust to random failures. The presence of
a few hub nodes that enhance the connectivity of the hypergraph.
As a result, the hypergraph with power-law hyperdegree distribution
maintains its overall connectivity and robustness in the face of random
failures.

In addition, we explore the dependence of the percolation point 𝑞𝐼𝐼𝑐
on the model parameter 𝛽 for both random hypergraph and power-
law hypergraph, considering different mean cardinalities ⟨𝑚⟩ and mean
hyperdegrees ⟨𝑘⟩. As shown in Fig. 5, it is observed that higher values
of 𝛽 consistently lead to lower critical points 𝑞𝐼𝐼𝑐 for both random
hypergraph and power-law hypergraph, indicating decreased robust-
ness of the system. In addition, higher values of the mean hyperdegree
⟨𝑘⟩ correspond to a higher level of system robustness (see Fig. 5(a)).
However, for the mean cardinality ⟨𝑚⟩, a larger mean cardinality leads
to increased fragility of the hypergraph when 𝛽 is large. This is because,
when the hyperedges contain more nodes, they are more likely to
disintegrate due to the failure of their internal nodes, thus reducing the
robustness of the network. However, when 𝛽 tends towards 0, hyper-
edges are not prone to disintegrate and a larger mean cardinality ⟨𝑚⟩
can improve the connectivity of the network, which in turn improves
the robustness of the network (see Fig. 5(b)).
4

3. Cascading failures on double-layer hypergraphs

3.1. Random double-layer hypergraph

We consider a double-layer hypergraph, where each of the two
layers 𝐴 and 𝐵 contains 𝑁 nodes and 𝑀 hyperedges. Each node in
layer 𝐴 has a corresponding interdependent node in layer 𝐵. When a
node in layer 𝐴 fails, it immediately triggers the failure of its inter-
dependent node in layer 𝐵, and vice versa. To initiate the cascading
failure process, an initial fraction of nodes, 𝑞, is removed from the
system. Additionally, we assume that the dissolution probability of each
hyperedge is 𝛽 given the removal of a node within that hyperedge. In
our study, we assume that only nodes belonging to the giant component
in each layer can survive. Both node removal and hyperedge dissolution
may lead to further fragmentation of the giant component, causing
more nodes to disconnect from the giant component and subsequently
fail. Due to the interdependencies between nodes in different network
layers, the failure of nodes in layer 𝐴 will propagate to layer 𝐵,
causing further fragmentation in layer 𝐵 and leading to the failure of
more nodes. These failed nodes will then spread back to layer 𝐴. This
iterative process continues, and the system eventually reaches a steady
state with the final survival nodes being in the giant component of their
respective layers and forming a mutual giant connected component
(MGCC). The cascading failure process in the double-layer hypergraph
is illustrated in Fig. 6. Under the influence of such cascading failures,
the system undergoes a first-order phase transition. We focus on the
fraction 𝑆𝐴𝐵 of nodes in the MGCC and the corresponding threshold
𝑞𝐼𝐼𝑐 at which the MGCC vanishes.

The generation functions for hyperdegree distribution and excess
hyperdegree distribution in both layers 𝐴 and 𝐵 can be defined as
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Fig. 4. Percolation transition on scale-free hypergraphs. Panels (a) and (b) illustrate the simulated and theoretical phase diagrams for percolation transitions on scale-free hypergraphs
with ⟨𝑚⟩ = 4 and ⟨𝑘⟩ = 4(𝛾 = 2.6, 𝑘𝑚𝑖𝑛 = 2, 𝑘𝑚𝑎𝑥 = 227) respectively, where the dotted line outlines the theoretical percolation transition point 𝑞𝐼𝐼𝑐 . In (c), cross-sections of the phase
diagram are depicted, illustrating 𝑆 versus 𝑞 for different 𝛽. Symbols represent simulation data, and dotted lines represent theoretical predictions. Panel (d) displays the corresponding
susceptibility 𝜒 from simulations. The simulation results are obtained from 50 independent runs, and the hypergraph size is 𝑁 = 105.

Fig. 5. The relationship between the transition point 𝑞𝐼𝐼𝑐 and the model parameter 𝛽 under various average degrees ⟨𝑘⟩ and average cardinality ⟨𝑚⟩ for random hypergraphs and
scale-free hypergraphs. Panel (a) presents the results for ⟨𝑘⟩ = 4, 5, 6, and a fixed ⟨𝑚⟩ = 4. Panel (b) shows the results for ⟨𝑚⟩ = 3, 4, 5, and a fixed ⟨𝑘⟩ = 4. The dotted lines represent
the theoretical results for hypergraphs with a random degree distribution, while the solid lines depict the theoretical results for hypergraphs with a power-law degree distribution.
For scale-free hypergraphs, the average hyperdegrees ⟨𝑘⟩ = 4, 5, 6 correspond to exponents 𝛾 = 2.6, 2.3, 2.1 for degree ranges (𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥) = (2, 227), (2, 128), (2, 109), respectively.
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Fig. 6. The illustration of cascading failure process on a double-layer hypergraph. (a) represents the original hypergraph with 9 nodes and 8 hyperedges; (b) Node 2 is removed
from layer 𝐴 as an initial action. As a consequence, the corresponding dependent node 2 in layer 𝐵 fails; (c) The failure of node 2 leads to the dissolution of hyperedges 𝑏1 and 𝑏2
n layer 𝐵 due to their dependence on node 2; (d) Furthermore, nodes 1 and 3 in layer 𝐵 are disconnected from the giant component, resulting in the failure of the corresponding
nterdependent nodes 1 and 3 in layer 𝐴; (d) Node 3 triggers the dissolution of hyperedge 𝑎2 in layer 𝐴; (f) Finally, nodes 4 and 5 fail as they become isolated from the giant
omponent in layer 𝐴, leading to the removal of their corresponding dependent nodes 4 and 5 in layer 𝐵. The cascading failure process ceases with the survival of the MGCC
ontaining nodes 6 to 9.
𝐶
d
i
v
h
l

ollows

𝐺𝐴
0 (𝑥) =

∑

𝑘𝐴=0
𝑃𝐴(𝑘𝐴)𝑥𝑘𝐴 ,

𝐺𝐵
0 (𝑥) =

∑

𝑘𝐵=0
𝑃𝐵(𝑘𝐵)𝑥𝑘𝐵 ,

𝐺𝐴
1 (𝑥) =

∑

𝑘𝐴=1

𝑃𝐴(𝑘𝐴)𝑘𝐴
⟨𝑘𝐴⟩

𝑥𝑘𝐴−1,

𝐺𝐵
1 (𝑥) =

∑

𝑘𝐵=1

𝑃𝐵(𝑘𝐵)𝑘𝐵
⟨𝑘𝐵⟩

𝑥𝑘𝐵−1.

To solve the order parameter 𝑆𝐴𝐵 , several auxiliary parameters are
defined. 𝑅𝐴 and 𝑅𝐵 represent the probabilities that a randomly chosen
hyperedge of a random node in layers 𝐴 and 𝐵 can connect to their
giant components respectively. 𝑆𝐴→𝐵 (𝑆𝐵→𝐴) represents the probability
that the interdependent node in layer 𝐵(𝐴) of a random node in layer
𝐴(𝐵) can connect to the giant component. Thus 𝑆𝐴→𝐵 and 𝑆𝐵→𝐴 can
be obtained as
⎧

⎪

⎨

⎪

⎩

𝑆𝐴→𝐵 = (1 − 𝑞)
[

1 − 𝐺𝐵
0 (1 − 𝑅𝐵)

]

,

𝑆𝐵→𝐴 = (1 − 𝑞)
[

1 − 𝐺𝐴
0 (1 − 𝑅𝐴)

]

.
(9)

The recursive equations for 𝑅𝐴 and 𝑅𝐵 can be expressed as

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑅𝐴 =
∑

𝑚

𝑚𝑄𝐴(𝑚)
⟨𝑚⟩

𝑚−1
∑

𝑛=0
(1 − 𝛽)𝑛

(

1 −
[

𝐺𝐴
1 (1 − 𝑅𝐴)

]𝑚−1−𝑛)

×
(

𝑚 − 1
𝑛

)

𝑆𝑚−1−𝑛
𝐴→𝐵 (1 − 𝑆𝐴→𝐵)𝑛,

𝑅𝐵 =
∑

𝑚

𝑚𝑄𝐵(𝑚)
⟨𝑚⟩

𝑚−1
∑

𝑛=0
(1 − 𝛽)𝑛

(

1 −
[

𝐺𝐵
1 (1 − 𝑅𝐵)

]𝑚−1−𝑛)

×
(

𝑚 − 1
𝑛

)

𝑆𝑚−1−𝑛
𝐵→𝐴 (1 − 𝑆𝐵→𝐴)𝑛.

(10)

Thus the fraction 𝑆𝐴𝐵 of nodes in MGCC can be given by

𝐴𝐵 = (1 − 𝑞)
[

1 − 𝐺𝐴
0 (1 − 𝑅𝐴)

][

1 − 𝐺𝐵
0 (1 − 𝑅𝐵)

]

.

In this paper, we only consider the most simple scenario, where
the two layers, 𝐴 and 𝐵, have identical hyperdegree distributions
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(i.e., 𝑃𝐴(𝑘) = 𝑃𝐵(𝑘)) and cardinality distributions (i.e., 𝑄𝐴(𝑚) = 𝑄𝐵(𝑚)).
Taking the Poisson hyperdegree distribution and the Poisson cardinality
distribution as examples, we have observed that the function curves of
Eq. (10) could be tangent at a point 𝑞𝐼𝑐 with the decrease of 𝑞 for a
given 𝛽. Based on this observation, we can infer that for double-layer
hypergraphs, the breakdown of MGCC occurs in a first-order phase
transition, and the critical value 𝑞𝐼𝑐 can be estimated according to the
tangent point (confirmed by Fig. 7).

3.2. Poisson hyperdegree distribution

We first consider the case where the hyperdegree follows Poisson
distribution for both two layers (i.e., 𝑃𝐴(𝑘) = 𝑃𝐵(𝑘) = 𝑒−⟨𝑘⟩⟨𝑘⟩𝑘

𝑘! ).
Compared to monolayer hypergraphs, double-layer hypergraphs exhibit
higher fragility, which can be observed in the percolation manner of
the systems and the critical points. For double-layer hypergraphs, the
percolation phase transition type is a first-order discontinuous phase
transition. In contrast, for monolayer hypergraphs, the percolation
phase transition type is a second-order continuous phase transition.
Additionally, the critical point of the percolation phase transition in
monolayer hypergraphs is larger than that in double-layer hypergraphs
(as shown in Figs. 3 and 8). These differences highlight the contrasting
nature of phase transitions between monolayer and double-layer hyper-
graphs, emphasizing the importance of interlayer interdependencies in
shaping the robustness of complex systems.

3.3. Power-law hyperdegree distribution

We consider the scenario where the hyperdegree distribution fol-
lows a power-law distribution for both layers of the double-layer hy-
pergraphs. Specifically, we assume that the hyperdegree distributions
for layer 𝐴 and layer 𝐵 are given by 𝑃𝐴(𝑘) = 𝑃𝐵(𝑘) = 𝐶𝑘−𝛾 , where

is a normalization constant and 𝛾 is the exponent of the power-law
istribution. In this case, we still observe a first-order phase transition
n the system, as depicted in Fig. 9. However, an important obser-
ation is that the system of double-layer hypergraphs with Poisson
yperdegree distribution is more robust than the system with power-
aw hyperdegree distribution. This means that the double-layer system
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Fig. 7. The solutions of Eq. (10) for a fixed 𝛽 = 0.3. Settings: (a) 𝑞 = 0.240; (b) 𝑞 = 0.200; (c) 𝑞 = 0.160. The mean cardinality is ⟨𝑚⟩ = 4, and the mean hyperdegree is ⟨𝑘⟩ = 2.5.
Fig. 8. Percolation transition on double-layer random hypergraphs. Panels (a) and (b) illustrate the simulated and theoretical phase diagrams for percolation transitions on random
hypergraphs with ⟨𝑚⟩ = 4 and ⟨𝑘⟩ = 4 respectively, where the dotted line outlines the theoretical percolation transition point 𝑞𝐼𝑐 . In (c), cross-sections of the phase diagram
are depicted, illustrating 𝑆 versus 𝑞 for different 𝛽. Symbols represent simulation data, and dotted lines represent theoretical predictions. Panel (d) displays the corresponding
susceptibility 𝜒 from simulations. The simulation results are obtained from 50 independent runs, and the hypergraph size is 𝑁 = 105.
with Poisson hyperdegree distribution is more resilient or less sensitive
to random perturbations.

To support this observation, we can refer to Fig. 10, which compares
the curves of the percolation transition point 𝑞𝐼𝑐 versus 𝛽 of double-layer
hypergraphs with Poisson and power-law hyperdegree distribution for
different parameter settings. By comparing the results, we can observe
that the percolation point 𝑞𝐼𝑐 for double-layer scale-free hypergraphs
is lower than that for double-layer random hypergraphs for the same
mean hyperdegree ⟨𝑘⟩, mean cardinality ⟨𝑚⟩ and dependency strength
𝛽. This indicates that relatively, double-layer scale-free hypergraphs
exhibit poorer robustness. Furthermore, larger average degrees are
associated with larger 𝑞𝐼𝑐 , implying that higher average hyperdegrees
lead to stronger network robustness. Lastly, whether it is for the Poisson
degree distribution or the scale-free degree distribution, when 𝛽 is
large, smaller values of ⟨𝑚⟩ result in stronger network robustness, while
when 𝛽 is small, larger values of ⟨𝑚⟩ lead to stronger robustness.
7

4. Conclusion

In this paper, we investigated the robustness of complex systems
under higher-order interdependencies using hypergraph models. We de-
veloped a percolation model that considered the interactions between
nodes and hyperedges in hypergraphs and studied the robustness of
hypergraphs under the mechanism that node failure would lead to the
dissolution of hyperedge in both monolayer and double-layer hyper-
graphs. Our analysis reveals several important findings that contribute
to our understanding of complex systems and their resilience in the face
of higher-order interdependencies.

Firstly, we observed that double-layer hypergraphs consistently ex-
hibit greater fragility compared to monolayer hypergraphs, regardless
of the hyperdegree distribution (Poisson or power-law). This result
suggests that the presence of interdependencies across layers in double-
layer hypergraphs amplifies the potential for cascading failures, making
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Fig. 9. Percolation transition on double-layer scale-free hypergraphs. Panels (a) and (b) illustrate the simulated and theoretical phase diagrams for percolation transitions on
random hypergraphs with ⟨𝑚⟩ = 4 and ⟨𝑘⟩ = 4(𝛾 = 2.6, 𝑘𝑚𝑖𝑛 = 2, 𝑘𝑚𝑎𝑥 = 227) respectively, where the dotted line outlines the theoretical percolation transition point 𝑞𝐼𝑐 . In (c),
cross-sections of the phase diagram are depicted, illustrating 𝑆 versus 𝑞 for different 𝛽. Symbols represent simulation data, and dotted lines represent theoretical predictions. Panel
(d) displays the corresponding susceptibility 𝜒 from simulations. The simulation results are obtained from 50 independent runs, and the hypergraph size is 𝑁 = 105.
Fig. 10. The relationship between the transition point 𝑞𝐼𝑐 and the model parameter 𝛽 under various average degrees ⟨𝑘⟩ and average cardinality ⟨𝑚⟩ for double-layer random
hypergraphs and scale-free hypergraphs. Panel (a) presents the results for ⟨𝑘⟩ = 4, 5, 6, and a fixed ⟨𝑚⟩ = 4. Panel (b) shows the results for ⟨𝑚⟩ = 3, 4, 5, and a fixed ⟨𝑘⟩ = 4. The
dotted lines represent the theoretical results for hypergraphs with a random degree distribution, while the solid lines depict the theoretical results for hypergraphs with a power-law
degree distribution. For scale-free hypergraphs, the average hyperdegrees ⟨𝑘⟩ = 4, 5, 6 correspond to exponents 𝛾 = 2.6, 2.3, 2.1 for degree ranges (𝑘𝑚𝑖𝑛 , 𝑘𝑚𝑎𝑥) = (2, 227), (2, 128), (2, 109),
respectively.
these systems more vulnerable to random perturbations [52]. This
finding emphasizes the critical role of interdependencies in shaping
system robustness and calls for attention when designing and managing
real-world systems characterized by multilayer interconnections.

Additionally, our study also revealed the divergent effects of hy-
perdegree distribution on system robustness in monolayer hypergraphs
and multilayer hypergraphs. In monolayer hypergraphs, a power-law
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hyperdegree distribution reduces system fragility. This indicates that
highly connected nodes with large hyperdegrees play a crucial role in
maintaining the overall connectivity of the hypergraph. Specifically,
nodes with large hyperdegrees are rare in the system, which makes
them difficult to be removed in a random attack, thus ensuring the
connectivity and robustness of the system. This result is consistent with
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findings in ordinary networks [58]. On the other hand, in double-
layer hypergraphs, a power-law hyperdegree distribution diminishes
system robustness. Specifically, there is a cascading failure effect where
the scale of failures can amplify iteratively in double-layer hyper-
graphs, and nodes are susceptible to failure due to the failure of
their interdependent nodes, including hub nodes with large hyperde-
grees. This scenario significantly reduces the network’s connectivity.
These contrasting effects underscore the intricate relationship between
hyperdegree distribution and system behavior in different types of
hypergraphs, emphasizing the importance of a thorough understanding
of interdependencies when analyzing and designing complex systems.

Furthermore, our analysis reveals the contrasting effect of mean
hyperdegree and mean cardinality on system robustness. Whether it
is a power-law hyperdegree distribution or a random hyperdegree
distribution, a higher mean hyperdegree enhances system robustness,
as it increases the number of hyperedges a node participates in and
enhances the connectivity of hypergraphs. However, this effect does not
hold for mean cardinalities, when 𝛽 is large, smaller values of mean car-
dinalities result in stronger network robustness, while when 𝛽 is small,
larger values of mean cardinalities lead to stronger robustness. This
finding underscores the importance of considering both hyperdegrees
and hyperedge cardinalities when evaluating system resilience.

Our research provides valuable insights into the behavior of com-
plex systems under higher-order interdependencies. Understanding the
fragility of monolayer or double-layer hypergraphs and the contrast-
ing effects of hyperdegree distribution and connectivity density on
robustness will aid in the design and management of resilient sys-
tems. This has broad implications for network science, computational
modeling, and resilience analysis, enabling us to assess and design
robust systems effectively in real-world applications. By shedding light
on the intricate relationship between higher-order interdependencies
and system robustness, this study contributes to the advancement of
our understanding of their behavior in interconnected environments.
Looking ahead, it is important to note that real-world multilayer net-
works often exhibit varying degrees of correlation in the coupling
between layers. Whether highly connected nodes in one layer are
coupled with similarly connected nodes in another layer or vice versa,
these correlations have a substantial impact on the robustness of the
multilayer network. Future research should delve deeper into consid-
ering additional topological properties and coupling characteristics of
hypergraphs to comprehensively understand their influence on system
robustness, further advancing our understanding of the robustness of
complex systems.

CRediT authorship contribution statement

Run-Ran Liu: Methodology, Theoretical analysis, Visualization,
Writing – original draft. Changchang Chu: Simulation, Investigation,
Visualization. Fanyuan Meng: Writing – review & editing, Visualiza-
tion.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work is supported by the National Natural Science Foundation
of China (Grant Nos. 61773148 and 52374013) and the Entrepreneur-
ship and Innovation Project of High Level Returned Overseas Scholar
9

in Hangzhou.
References

[1] Hackett A, Cellai D, Gómez S, Arenas A, Gleeson JP. Bond percolation on
multiplex networks. Phys Rev X 2016;6(2):021002.

[2] Gleeson JP. Bond percolation on a class of clustered random networks. Phys Rev
E 2009;80(3):036107.

[3] Newman MEJ, Watts DJ. Scaling and percolation in the small-world network
model. Phys Rev E 1999;60:7332–42.

[4] Bastas N, Kosmidis K, Argyrakis P. Explosive site percolation and finite-size
hysteresis. Phys Rev E 2011;84:066112.

[5] Callaway DS, Newman MEJ, Strogatz SH, Watts DJ. Network robustness and
fragility: Percolation on random graphs. Phys Rev Lett 2000;85(25):5468.

[6] Li M, Liu R-R, Lü L, Hu M-B, Xu S, Zhang Y-C. Percolation on complex networks:
Theory and application. Phys Rep 2021;907:1–68.

[7] Moore C, Newman MEJ. Exact solution of site and bond percolation on
small-world networks. Phys Rev E 2000;62:7059–64.

[8] Newman MEJ, Ziff RM. Fast Monte Carlo algorithm for site or bond percolation.
Phys Rev E 2001;64(1):016706.

[9] Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J-G,
Petri G. Networks beyond pairwise interactions: structure and dynamics. Phys
Rep 2020;874:1–92.

[10] Sun H, Bianconi G. Higher-order percolation processes on multiplex hypergraphs.
Phys Rev E 2021;104(3):034306.

[11] Wang W, Li W, Lin T, Wu T, Pan L, Liu Y. Generalized k-core percolation on
higher-order dependent networks. Appl Math Comput 2022;420:126793.

[12] Zhao D, Li R, Peng H, Zhong M, Wang W. Higher-order percolation in simplicial
complexes. Chaos Solitons Fractals 2022;155:111701.

[13] Battiston F, Amico E, Barrat A, Bianconi G, Ferraz de Arruda G, Franceschiello B,
Iacopini I, Kéfi S, Latora V, Moreno Y, et al. The physics of higher-order
interactions in complex systems. Nat Phys 2021;17(10):1093–8.

[14] Grilli J, Barabás G, Michalska-Smith MJ, Allesina S. Higher-order interactions
stabilize dynamics in competitive network models. Nature 2017;548(7666):210–
3.

[15] Shi T, Qin Y, Yang Q, Ma Z, Li K. Synchronization of directed uniform
hypergraphs via adaptive pinning control. Physica A 2023;615:128571.

[16] Lambiotte R, Rosvall M, Scholtes I. From networks to optimal higher-order
models of complex systems. Nat Phys 2019;15(4):313–20.

[17] Barrat A, Ferraz de Arruda G, Iacopini I, Moreno Y. Social contagion on
higher-order structures. In: Higher-order systems. Springer; 2022, p. 329–46.

[18] Ferraz de Arruda G, Tizzani M, Moreno Y. Phase transitions and stability of
dynamical processes on hypergraphs. Commun Phys 2021;4(1):24.

[19] Lotito QF, Musciotto F, Montresor A, Battiston F. Higher-order motif analysis in
hypergraphs. Commun Phys 2022;5(1):79.

[20] Lee G, Yoo J, Shin K. Mining of real-world hypergraphs: Patterns, tools,
and generators. In: Proceedings of the 31st ACM international conference on
information and knowledge management. 2022, p. 5144–7.

[21] Taramasco C, Cointet J-P, Roth C. Academic team formation as evolving
hypergraphs. Scientometrics 2010;85(3):721–40.

[22] Kapoor K, Sharma D, Srivastava J. Weighted node degree centrality for hyper-
graphs. In: 2013 IEEE 2nd network science workshop (NSW). IEEE; 2013, p.
152–5.

[23] Lin Y-R, Sun J, Castro P, Konuru R, Sundaram H, Kelliher A. Extracting
community structure through relational hypergraphs. In: Proceedings of the 18th
international conference on world wide web. 2009, p. 1213–4.

[24] Contisciani M, Battiston F, De Bacco C. Inference of hyperedges and overlapping
communities in hypergraphs. Nature Commun 2022;13(1):7229.

[25] Ghoshal G, Zlatić V, Caldarelli G, Newman MEJ. Random hypergraphs and their
applications. Phys Rev E 2009;79:066118.

[26] Ramadan EY. Biological networks: modeling and structural analysis. Old
Dominion University; 2008.

[27] Milano M, Agapito G, Cannataro M. Challenges and limitations of biological
network analysis. BioTech 2022;11(3):24.

[28] Huang Z, Wang C, Ruj S, Stojmenovic M, Nayak A. Modeling cascading failures
in smart power grid using interdependent complex networks and percolation
theory. In: 2013 IEEE 8th conference on industrial electronics and applications
(ICIEA). IEEE; 2013, p. 1023–8.

[29] Cui P, Yang X, Abdel-Aty M. Sparse spatio-temporal dynamic hypergraph learning
for traffic accident prediction. 2023.

[30] Zhao Y, Luo X, Ju W, Chen C, Hua X-S, Zhang M. Dynamic hypergraph structure
learning for traffic flow forecasting. ICDE; 2023.

[31] Harrod S. Modeling network transition constraints with hypergraphs. Transp Sci
2011;45(1):81–97.

[32] Barrena E, De-Los-Santos A, Mesa JA, Perea F. Analyzing connectivity in
collective transportation line networks by means of hypergraphs. Eur Phys J
Spec Top 2013;215(1):93–108.

[33] Satchidanand SN, Jain SK, Maurya A, Ravindran B. Studying Indian rail-
ways network using hypergraphs. In: 2014 sixth international conference on
communication systems and networks (COMSNETS). IEEE; 2014, p. 1–6.

[34] Boccaletti S, Bianconi G, Criado R, del Genio C, Gómez-Gardeñes J, Romance M,
Sendiña-Nadal I, Wang Z, Zanin M. The structure and dynamics of multilayer
networks. Phys Rep 2014;544(1):1–122.

http://refhub.elsevier.com/S0960-0779(23)01148-7/sb1
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb1
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb1
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb2
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb2
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb2
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb3
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb3
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb3
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb4
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb4
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb4
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb5
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb5
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb5
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb6
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb6
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb6
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb7
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb7
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb7
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb8
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb8
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb8
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb9
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb9
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb9
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb9
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb9
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb10
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb10
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb10
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb11
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb11
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb11
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb12
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb12
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb12
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb13
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb13
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb13
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb13
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb13
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb14
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb14
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb14
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb14
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb14
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb15
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb15
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb15
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb16
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb16
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb16
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb17
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb17
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb17
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb18
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb18
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb18
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb19
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb19
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb19
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb20
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb20
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb20
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb20
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb20
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb21
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb21
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb21
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb22
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb22
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb22
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb22
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb22
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb23
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb23
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb23
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb23
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb23
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb24
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb24
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb24
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb25
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb25
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb25
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb26
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb26
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb26
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb27
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb27
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb27
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb28
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb28
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb28
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb28
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb28
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb28
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb28
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb29
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb29
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb29
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb30
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb30
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb30
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb31
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb31
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb31
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb32
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb32
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb32
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb32
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb32
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb33
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb33
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb33
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb33
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb33
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb34
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb34
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb34
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb34
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb34


Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 177 (2023) 114246R.-R. Liu et al.
[35] Kivelä M, Arenas A, Barthelemy M, Gleeson JP, Moreno Y, Porter MA. Multilayer
networks. J Complex Netw 2014;2(3):203–71.

[36] Sahoo S, Dragicevic T, Blaabjerg F. Multilayer resilience paradigm against cyber
attacks in DC microgrids. IEEE Trans Power Electron 2021;36(3):2522–32.

[37] Alonso M, Turanzas J, Amaris H, Ledo AT. Cyber-physical vulnerability
assessment in smart grids based on multilayer complex networks. Sensors
2021;21(17):5826.

[38] Lv C, Xing Y, Zhang J, Na X, Li Y, Liu T, Cao D, Wang F-Y. Levenberg–Marquardt
backpropagation training of multilayer neural networks for state estimation of a
safety-critical cyber-physical system. IEEE Trans Ind Inf 2017;14(8):3436–46.

[39] Murase Y, Török J, Jo H-H, Kaski K, Kertész J. Multilayer weighted social
network model. Phys Rev E 2014;90:052810.

[40] Dickison ME, Magnani M, Rossi L. Multilayer social networks. Cambridge
University Press; 2016.

[41] De Domenico M, Granell C, Porter MA, Arenas A. The physics of spreading
processes in multilayer networks. Nat Phys 2016;12(10):901–6.

[42] Wu J, Pu C, Li L, Cao G. Traffic dynamics on multilayer networks. Digit Commun
Netw 2020;6(1):58–63.

[43] Ma J, Li M, Li H-J. Traffic dynamics on multilayer networks with different
speeds. IEEE Trans Circuits Syst II 2021;69(3):1697–701.

[44] Gao L, Shu P, Tang M, Wang W, Gao H. Effective traffic-flow assignment strategy
on multilayer networks. Phys Rev E 2019;100(1):012310.

[45] Peng H, Xie Z, Zhao D, Zhong M, Han J, Wang W. Reliability analysis of
interdependent hypergraph network under different attack strategies. Internat
J Modern Phys C 2023;34(02):2350027.

[46] Peng H, Qian C, Zhao D, Zhong M, Ling X, Wang W. Disintegrate hyper-
graph networks by attacking hyperedge. J King Saud Univ Comput Inf Sci
2022;34(7):4679–85.
10
[47] Peng H, Qian C, Zhao D, Zhong M, Han J, Wang W. Targeting attack hypergraph
networks. Chaos 2022;32(7).

[48] Bradde S, Bianconi G. The percolation transition in correlated hypergraphs. J
Statist Mech Theory Exp 2009;(P07028).

[49] Liu R-R, Jia C-X, Li M, Meng F. A threshold model of cascading failure on random
hypergraphs. Chaos Solitons Fractals 2023;173:113746.

[50] Xu X-J, He S, Zhang L-J. Dynamics of the threshold model on hypergraphs. Chaos
2022;32(2).

[51] Coutinho BC, Wu A-K, Zhou H-J, Liu Y-Y. Covering problems and core
percolations on hypergraphs. Phys Rev Lett 2020;124(24).

[52] Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S. Catastrophic cascade of
failures in interdependent networks. Nature 2010;464:1025–8.

[53] Radicchi F. Percolation in real interdependent networks. Nat Phys
2015;11(7):597–602.

[54] Havlin S, Stanley HE, Bashan A, Gao J, Kenett DY. Percolation of interdependent
network of networks. Chaos Solitons Fractals 2015;72:4–19.

[55] Parshani R, Buldyrev SV, Havlin S. Interdependent networks: Reducing the
coupling strength leads to a change from a first to second order percolation
transition. Phys Rev Lett 2010;105(4):048701.

[56] Liu R-R, Eisenberg DA, Seager TP, Lai Y-C. The ‘‘weak’’ interdependence
of infrastructure systems produces mixed percolation transitions in multilayer
networks. Sci Rep 2018;8:2111.

[57] Liu R-R, Jia C-X, Lai Y-C. Asymmetry in interdependence makes a multilayer
system more robust against cascading failures. Phys Rev E 2019;100(5):052306.

[58] Albert R, Hawoong J, Barabási A-L. Error and attack tolerance of complex
networks. Nature 2000;40(6794):378–82.

http://refhub.elsevier.com/S0960-0779(23)01148-7/sb35
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb35
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb35
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb36
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb36
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb36
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb37
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb37
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb37
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb37
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb37
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb38
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb38
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb38
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb38
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb38
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb39
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb39
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb39
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb40
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb40
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb40
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb41
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb41
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb41
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb42
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb42
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb42
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb43
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb43
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb43
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb44
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb44
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb44
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb45
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb45
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb45
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb45
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb45
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb46
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb46
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb46
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb46
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb46
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb47
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb47
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb47
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb48
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb48
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb48
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb49
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb49
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb49
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb50
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb50
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb50
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb51
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb51
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb51
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb52
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb52
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb52
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb53
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb53
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb53
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb54
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb54
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb54
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb55
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb55
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb55
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb55
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb55
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb56
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb56
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb56
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb56
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb56
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb57
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb57
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb57
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb58
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb58
http://refhub.elsevier.com/S0960-0779(23)01148-7/sb58

	Higher-order interdependent percolation on hypergraphs
	Introduction
	Percolation on random hypergraphs
	Random hypergraph model 
	Poisson degree distribution
	Power-law hyperdegree distribution

	Cascading failures on double-layer hypergraphs
	Random double-layer hypergraph
	Poisson hyperdegree distribution
	Power-law hyperdegree distribution

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


