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Recent years have witnessed the proliferation of causal learning techniques, aimed at extracting 
the abundant causal relationships embedded within observational data. In many scenarios, our 
primary focus lies in predicting a single target variable. In such cases, it becomes both inefficient 
and unnecessary to learn an entire causal network through advanced global learning methods. 
To address this challenge, the concept of local causal learning has been introduced to identify 
the direct causes and effects of a target variable of interest. However, current algorithms exhibit 
limitations stemming from their reliance on conditional independence tests, which only consider 
the linear and pairwise relationships but ignore the ubiquitous nonlinear and multivariate 
causality, making them lose efficacy in practical scenarios. This paper takes significant strides 
toward facilitating the real-world applications for local causal learning. To identify the nonlinear 
relations, this paper discovers the Markov boundary (MB) through calculating the minimal 
conditional covariance operator in reproducing kernel Hilbert space. This approach establishes 
a theoretical equivalence between the solution and MB. Subsequently, a nonlinear scoring 
mechanism for structure learning is employed based on the selected subset, yielding the optimal 
local causal structure. A series of extensive experiments serves to underscore the superiority of 
the proposed method.

1. Introduction

Causal learning aims to reveal the causal relationships among a random variable set, which could uncover the underlying gener-

ative mechanism behind the data to facilitate the interpretability and generalization ability of learning models [1]. A considerable 
body of research has been dedicated to predicting causality from observational data, focusing primarily on two tasks: global causal 
learning [2] and local causal learning [3]. As depicted in Fig. 1, global learning methods strive to acquire the complete causal graph, 
thereby identifying all causal relationships within a variable set and constituting the majority of research in this field. In contrast, 
local learning algorithms concentrate solely on the causal structure surrounding a specific target variable, aiming to uncover its direct 
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Fig. 1. The concept illustration of global causal learning, local causal learning, and MB learning. Purple circles denote the target, blue circles denote common variables, 
and red circles denote causal variables.

causes and effects. Local causal structures inherently retain the capacity to retain pivotal information about the target variable, which 
can not only provide local causality of target to promote the learning system to understand the underlying causal mechanism, but 
also be used as a data preprocessing step to control the learning cost and improve the interpretability. Intuitively, a global learning 
algorithm can also be used to obtain a local structure by reading out from the learned global network, while it is wasteful and 
unnecessary to solve the so large-scale NP-hard problem if we are only interested in the prediction of a certain target, especially in 
real-world large-scale network [4].

Several local causal learning methodologies have been developed to identify the local structure surrounding a given target variable 
without the need to learn the entire causal network. Typically, these algorithms begin by identifying the Markov boundary (MB) 
set1 or MB subset of the target. Subsequently, they sequentially uncover the MB (sub)sets of variables connected to the target while 
simultaneously framing the directed paths between the target and these selected variables, ultimately constructing the local causal 
structure [6]. Compared to global learning methods, these algorithms substantially reduce time complexity by focusing on the MB 
set instead of the entire variable set [4]. However, a weakness inherent in the MB discovery procedure is its inability to consider 
multivariate nonlinear causality, despite its prevalence in real-world data. Current MB discovery techniques typically assess whether 
a variable should be included in the MB set one by one [7], using a conditional independence test between pairs of variables. 
This approach fails to capture multivariate nonlinear relationships (e.g., the logical operation ‘XOR’) and can only identify pairwise 
causality. Furthermore, the conditional independence test’s performance is constrained by the size of the conditioning set, resulting 
in reduced accuracy, especially with limited training instances.

A feasible solution for the identification of multivariate causality is to directly implement the test between variable combinations 
and the target, while various combinations will bring prohibitively expensive calculation, and the conditional independence test 
between target and variable subset also declines the reliability of identification since the exponentially growing value space reduces 
the sample size per degree of freedom for hypothesis testing in conditional independence test [8]. Analogously, another solution, 
employing a score function for structure learning that considers nonlinear relations, also suffers from the time-consuming process 
due to the searching space on the entire variable set, whose time complexity is comparable to the global learning approaches.

In light of these challenges, we propose a novel approach for kernel-based local causal learning, departing from the conventional 
conditional independence test. In this paper, we map the variable space and target space to the reproducing kernel Hilbert space 
(RKHS) [9] to consider both pairwise and multivariate relationships. The statistical concept, conditional covariance operator [10], is 
introduced to describe the conditional dependence and independence between variables. We will theoretically establish that the MB 
of a target is equivalent to the variable subset that minimizes the conditional covariance operator, enabling our proposed methods 
to learn the MB variables by solving an optimization problem in RKHS. Based on the skeleton of the local structure constructed by 
the learned MB, a nonlinear Bayesian network score function is employed to determine the orientation of the optimal local causal 
structure, where the calculation complexity is significantly decreased as the MB scale is much smaller than the entire variable set. 
The main contributions in this paper are summarized as follows:

• We theoretically demonstrate the equivalence between the MB and the minimal conditional covariance operator, paving the way 
for a novel kernel-based MB discovery strategy that minimizes the conditional covariance operator in RKHS.

• A novel local causal learning method is proposed based on the kernel MB discovery strategy, which could retrieve the local 
causal structure around the target, and simultaneously identify both the linear and nonlinear (including multivariate) causality. 
To the best of our knowledge, it is the first nonlinear local causal learning algorithm.

• Extensive experiments on synthetic and real-world data sets validate the practicability and superiority of the proposed ap-

proaches in the MB discovery and local causal learning tasks.

1 In a causal network, the MB set of a target comprises its direct causes (parent nodes), direct effects (child nodes), and other direct causes of its direct effects 
2

(spouse nodes) [5].
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2. Related work

Numerous extensive studies [1] have consistently highlighted the superiority of causality over correlation across diverse learning 
scenarios. Causal learning, alternatively referred to as causal discovery [11], has garnered significant attention as a means to reveal 
causal relationships within a set of variables, to facilitate the interpretability and generalization ability of learning models [11]. 
A substantial body of research has been dedicated to the task of predicting causality from observational data [11], broadly categorized 
into two sub-areas: global causal discovery [2] and local causal discovery [3]. In the following sections, we delve into related work 
in these two areas, with additional discussion on Markov Boundary (MB) discovery, a fundamental technique in local causal learning 
algorithms.

2.1. Global causal learning methods

Global causal discovery tries to reveal all the causal relationships among a variable set simultaneously, that is, these algorithms 
construct the entire causal Bayesian network (directed acyclic graph, DAG) for all variables, where a directed edge denotes the 
causality from a cause variable to an effect variable. Some pioneer approaches are proposed using interventions or randomized 
experiments [12], whereas only passive observation can be performed but active intervention cannot be implemented in most cases 
due to the limitations of experimental technology. This traditional way is replaced with causal learning from purely observational 
data [13], which can be roughly divided into four types: constraint-based approaches, score-based approaches, functional causal 
models-based approaches, and gradient-based approaches.

Early attention in this field was directed towards constraint-based methods, which predominantly exploit conditional indepen-

dence relationships within the data to uncover underlying causal structures. These algorithms, while not providing complete causal 
information, yield sets of causal structures that adhere to the same conditional independence criteria, known as Markov equivalence 
classes. Score-based approaches have emerged to select the most appropriate structure from these Markov equivalence classes [14], 
with examples like the greedy equivalence search (GES) algorithm [15]. However, finding the causal graph with the highest score 
is both NP-hard and NP-complete, resulting in a local optimum in most instances. To select the unique optimal structure, functional 
causal models [16] implement causal discovery by constructing a structural equation between cause and effect to represent the 
causal order, which has demonstrated their superiority when searching the optimal structures among the Markov equivalent struc-

tures, e.g., the Linear Non-Gaussian Acyclic Model (LiNGAM) [16]. Recent innovations have introduced gradient-based approaches 
for global learning [17], transforming the combinatorial optimization problem into a continuous optimization problem solvable 
through gradient descent.

2.2. Local causal learning methods

In certain practical applications, the focus narrows to the causal structure around a specific target variable, obviating the need 
for the time-consuming global learning procedure that encompasses all causal relationships. To tackle the local causal discovery, 
some algorithms are proposed to distinguish the direct causes and direct effects of a target variable [3]. While a significant amount 
of research has been dedicated to global learning algorithms, there has been a limited number of proposed algorithms specifically 
designed for local causal structure learning.

The pioneering algorithm developed for local causal structure learning is PCD-by-PCD (where PCD stands for Parents, Children, 
and Descendants) [4]. It first identifies the PCD set of a target variable and subsequently uncovers the PCD sets of variables directly 
linked to the target. The algorithm records V-structures to assist in determining the orientation of edges involving the target variable 
until all its direct causes and effects are identified. Another algorithm, Causal Markov Blanket (CMB) [3], initially learns an MB set 
for the target variable and subsequently orients edges by monitoring changes in conditional dependence and independence during 
the MB discovery process. CMB sequentially learns the MB sets of variables connected to the target and constructs local structures 
along the paths starting from the target variable until the direct causes and effects of the target are identified. The Efficient Local 
Causal Structure (ELCS) learning algorithm [18] introduces a new concept called N-structures to enhance MB discovery, thereby 
improving the time efficiency of local learning. However, none of these algorithms consider the nonlinear relationships present in 
the data. This paper proposes a novel local causal learning algorithm that combines linear and nonlinear causality based on kernel 
MB discovery to uncover local structures. This algorithm addresses the MB discovery as a subtask of local causal discovery, and we 
delve into the related work of MB discovery in the following subsections.

2.3. Markov boundary discovery

The Markov boundary (MB) of a target comprises its direct causes (parents), direct effects (children), and other direct causes of 
its direct effects within the causal Bayesian network [19]. Thus, MB discovery represents a subprocedure of causal discovery [19,20], 
yielding a skeleton that describes variable relationships without orientation around a specific target. MB provides a complete picture 
of the local causal structure around the target variable, which possesses a superior property: For target 𝑇 and its MB MB ⊂ X, all 
other variables 𝑋 ∈ X − MB are independent of 𝑇 conditioned on MB, and any subsets of MB do not satisfy the condition. This 
property underscores that the MB of a target encompasses all predictive causal information about the target and has been applied in 
3

feature selection techniques, known as “causal feature selection” as proposed by Guyon et al. [21].
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These constraint-based methods have found application across various scenarios, including multi-label data [22], biomedical data 
[8], and streaming data [23]. However, the mainstream techniques for conditional independence tests are constrained by the size 
of the conditioning set and the number of instances, rendering constraint-based methods unsuitable for scenarios featuring large MB 
sizes and limited samples. In contrast, score-based algorithms [24,25] employ scoring functions [26] and a greedy search strategy 
to evaluate the compatibility between the probability distribution in training data and the learned causal graph. These algorithms, 
often characterized by high time complexity, are less suitable for large-scale variable sets.

Existing MB learning algorithms [6] are roughly divided into constraint-based and score-based algorithms. Constraint-based 
methods [27,28] account for the majority of MB research, as the focus of this area, which learn MB via mining the conditional 
dependence and independence in the variable set. These constraint-based methods have found application across various scenarios, 
including multi-label data [22], biomedical data [8], and streaming data [23]. However, the mainstream techniques for conditional 
independence tests are constrained by the size of the conditioning set and the number of instances, rendering constraint-based 
methods unsuitable for scenarios featuring large MB sizes and limited samples. To overcome this flaw, score-based algorithms [24,25]

adopt a scoring function [26] and a greedy search method to measure the fitness between the probability distribution in training data 
and learned causal graph. These algorithms are usually with high time complexity and are not suitable for the large-scale variable 
set.

3. Local causal learning in RKHS

In this section, the capital letters (such as 𝑋) represent random variables, and the capital bold italic letters (such as Z) denote 
variable sets. Specifically, U = {𝑋1, 𝑋2, ⋯ , 𝑋𝑛} denotes the entire variable set, 𝑇 ∈ U denotes the target, and s𝑗 = {𝑥1, 𝑥2, ⋯ , 𝑥𝑛}(𝑗 =
1, ⋯ , 𝑚) denotes an instance. In addition, the symbol 𝑋 ̸⟂ 𝑌 |Z (𝑋 ⟂ 𝑌 |Z) represents that variables 𝑋 and 𝑌 are conditionally (in)de-

pendent given a variable set Z.

As mentioned in Section 1, the foundation of local causal learning lies in MB discovery. Therefore, to identify nonlinear multivari-

ate relationships in the data, we need to equip MB discovery techniques with this capability. Kernel methods [9] have demonstrated 
their effectiveness in addressing nonlinear problems across various scenarios. In this paper, we leverage kernel-based techniques to 
uncover nonlinear causality. Typically, the MB variables are represented in the original Euclidean space. Consequently, we can not 
directly obtain the MB set via searching in the mapped RKHS. In the following discussion, we take a detour to surmount this obsta-

cle using a statistical concept within the RKHS, namely the conditional covariance operator [10]. We first provide the equivalence 
analyses between MB and the conditional covariance operator in the RKHS.

The covariance operator was first used in Banach spaces [9] and introduced to RKHS [10] later, as an extension based on the 
covariance in Euclidean space. We use the symbol  to represent the RKHS associated with the Euclidean space  . The cross-

covariance operator for the random variable pair (𝑋, 𝑌 ) is the mapping from  to  . For each 𝑓 ∈ and 𝑔 ∈ :

⟨𝑔,Σ𝑌 𝑋𝑓 ⟩𝑌 =𝐶𝑜𝑣[𝑓 (𝑋), 𝑔(𝑌 )]

=𝐸𝑋𝑌 [𝑓 (𝑋)𝑔(𝑌 )] −𝐸𝑋 [𝑓 (𝑋)]𝐸𝑌 [𝑔(𝑌 )],
(1)

where Σ𝑌 𝑋 denotes the cross-covariance operator, which could be understood as the covariance matrix over the feature maps 
Φ (𝑌 ) and Φ (𝑋). Under the concept of cross-covariance operator, the dependence relationships between two variables could be 
transformed to the zero cross-covariance operator, that is, 𝐶𝑜𝑣[𝑓 (𝑋), 𝑔(𝑌 )] = 0:

𝑋 ⟂ 𝑌 ⟺ Σ𝑌 𝑋 = 0 ⟺ 𝐶𝑜𝑣[𝑓 (𝑋), 𝑔(𝑌 )] = 0. (2)

Conditional dependence can express more essential relations among variables, including the causality. Based on the cross-covariance 
operator, we provide the definition of conditional covariance operator [9] as follows to establish the formulation of conditional 
independence in RKHS. Since Σ𝑌 𝑋|𝑍 = Σ𝑌 𝑋 − Σ𝑌 𝑍Σ−1

𝑍𝑍
Σ𝑍𝑋 , then we can calculate the conditional covariance operator Σ𝑌 𝑌 |𝑋 on 

 → using:

Σ𝑌 𝑌 |𝑋 = Σ𝑌 𝑌 −Σ𝑌 𝑋Σ−1
𝑋𝑋

Σ𝑋𝑌 . (3)

In the square-integrable space 𝐿2(𝑃𝑋 ) on 𝑋, the following equation is true for ∀𝑔 ∈𝑌 if the sum  +ℝ is dense according to [10]:

∀𝑔 ∈ ,
⟨
𝑔,Σ𝑌 𝑌 |𝑋𝑔⟩

=𝐸𝑋 [𝐷𝑌 |𝑋 [𝑔(𝑌 )|𝑋]] (4)

Additionally, the residual error of 𝑔 ∈𝑌 can be characterized by the conditional covariance operator as

⟨
𝑔,Σ𝑌 𝑌 |𝑋𝑔⟩𝑌 = 𝑖𝑛𝑓

𝑓∈𝑋
𝐸𝑋𝑌 [(𝑔(𝑌 ) −𝐸𝑌 [𝑔(𝑌 )]) − (𝑓 (𝑋) −𝐸𝑋 [𝑓 (𝑋)])]2. (5)

With this mathematical foundation in place, we can establish a connection between the Markov Boundary (MB) and the condi-

tional covariance operator within the Reproducing Kernel Hilbert Space (RKHS). For a variable set U and a target variable 𝑇 ∈ U, the 
MB of 𝑇 must satisfy the independence property (U − Z ⟂ 𝑇 |Z) and the minimality requirement (no subsets of Z should satisfy the 
independence property). We will demonstrate that the minimal conditional covariance operator conforms to these two conditions, 
respectively. In this context, we employ the kernel trick to assess the causal information of a variable within the RKHS. The original 
4

sample space 𝜍 = {s1, s2, ⋯ , s𝑚} and target space 𝜏 = {𝑡1, 𝑡2, ⋯ , 𝑡𝑚} are mapped into the RKHS 𝜍 and 𝜏 , respectively, with two 
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measurable positive definite kernels 𝑘𝜍 ∶ 𝜍 × 𝜍→ℝ and 𝑘𝜏 ∶ 𝜏 × 𝜏→ℝ, which are both chosen as radial basis function in this paper as 
follows:

𝑘(𝑥, 𝑦) = 𝑒−
∥𝑥−𝑦∥2

2𝜎2 . (6)

And the two corresponding kernel matrixes are represented as (K𝜍 )𝑖𝑗 = 𝑘𝜍 (s𝑖, s𝑗 ) and (K𝜏 )𝑖𝑗 = 𝑘𝜏 (𝑡𝑖, 𝑡𝑗 ).
According to Eq. (4), for ∀𝑔 ∈ and Z ⊂U:

⟨
𝑔,Σ𝑇𝑇 |Z𝑔⟩𝜏 =𝐸Z[𝐷𝑇 |Z[𝑔(𝑇 )|Z]] (7)⟨
𝑔,Σ𝑇𝑇 |U𝑔⟩𝜏 =𝐸U[𝐷𝑇 |U[𝑔(𝑇 )|U]] (8)

The conditional covariance operators on Z ⊂U and U can be compared according to Eq. (5). Because the infimum within the scope 
of a subset Z should exceed the infimum within the scope of the entire variable set U, we have

⟨
𝑔,Σ𝑇𝑇 |U𝑔⟩𝜏 ≤ ⟨

𝑔,Σ𝑇𝑇 |Z𝑔⟩𝜏 (9)

This inequality implies that Σ𝑇𝑇 |U ⪯ Σ𝑇𝑇 |Z . Considering the condition for equality in Eq. (9), we analyze the statistical properties of 
the MB when the equality holds, i.e., Σ𝑇𝑇 |X = Σ𝑇𝑇 |Z . The variance 𝐷𝑇 |Z[𝑔(𝑇 )|Z] in Eq. (7) could be decomposed according to the law 
of total variance:

𝐷𝑇 |Z[𝑔(𝑇 )|Z] =𝐸(U−Z)∣Z
[
𝐷𝑇 ∣U[𝑔(𝑇 ) ∣ (U − Z) ∪ Z]

]
+𝐷(U−Z)∣Z

[
𝐸𝑇 ∣U[𝑔(𝑇 ) ∣ (U − Z) ∪ Z]

]
(10)

Calculating the expectation value of both sides in Eq. (10), we have:

𝐸Z

[
𝐷𝑇 |Z[𝑔(𝑇 )|Z]] =𝐸U

[
𝐷𝑇 ∣U[𝑔(𝑇 ) ∣ U]

]
+𝐸Z

[
𝐷(U−Z)∣Z

[
𝐸𝑇 ∣U[𝑔(𝑇 ) ∣ U]

]]
(11)

According to Eq. (7) and Eq. (8), Eq. (11) can be simplified as by substituting the two equations:

⟨
𝑔,Σ𝑇𝑇 |Z𝑔⟩𝜏 = ⟨

𝑔,Σ𝑇𝑇 |U𝑔⟩𝜏 +𝐸Z

[
𝐷(U−Z)∣Z

[
𝐸𝑇 ∣U[𝑔(𝑇 ) ∣ U]

]]
(12)

where 𝐸Z

[
𝐷(U−Z)∣Z

[
𝐸𝑇 ∣U[𝑔(𝑇 ) ∣ U]

]]
= 0 in the case of 

⟨
𝑔, (Σ𝑇𝑇 |Z −Σ𝑇𝑇 |U)𝑔⟩𝜏 = 0. Since the variance is nonnegative, 𝐸Z[

𝐷(U−Z)∣Z
[
𝐸𝑇 ∣U[𝑔(𝑇 ) ∣ U]

]]
= 0 is equivalent to 𝐷(U−Z)∣Z

[
𝐸𝑇 ∣U[𝑔(𝑇 ) ∣ U]

]
= 0 and 𝐸𝑇 ∣U[𝑔(𝑇 ) ∣ U] is a constant. Therefore, 𝐸𝑇 ∣U[𝑔(𝑇 ) ∣ U]

is independent of the variable set U conditioned on Z in the case of Σ𝑇𝑇 |Z = Σ𝑇𝑇 |U , that is:

𝐸Z

[
𝐷(U−Z)∣Z

[
𝐸𝑇 ∣U[𝑔(𝑇 ) ∣ U]

]]
= 0 ⟺ 𝑇 ⟂ U|Z (13)

which indicates that the variable subset Z satisfying the Σ𝑇𝑇 |Z = Σ𝑇𝑇 |U is the MB of target 𝑇 . According to Eq. (9), the objective of 
MB discovery can be taken as the minimization of the Σ𝑇𝑇 |Z . Formally,

𝑀𝐵(𝑇 ) = argmin
Z⊂X

Σ𝑇𝑇 |Z (14)

In this paper, we provide two methods to estimate the value of Σ𝑇𝑇 |Z .

(M1) Estimation through determinant of Σ𝑇𝑇 |Z : In an ordered set of positive definite matrices, the value of Σ𝑇𝑇 |Z could be 
estimated through its determinant. According to the Schur theorem [29],(

𝐴 𝐵

𝐵𝑇 𝐶

)(
𝐸 0
−𝐶−1𝐵𝑇 𝐸

)
=
(
𝐴−𝐵𝐶−1𝐵𝑇 𝐵

0 𝐶

)
(15)

Take the determinant for both sides of Eq. (15), then:

det
(
𝐴−𝐵𝐶−1𝐵𝑇

)
= det

(
𝐴 𝐵

𝐵𝑇 𝐶

)
∕det𝐶 (16)

Substitute 𝐴 = Σ̂𝑇𝑇 , 𝐵 = Σ̂𝑇Z , and 𝐶 = Σ̂ZZ into Eq. (16), then

det Σ̂𝑇𝑇 ∣Z =
det Σ̂[𝑇Z][𝑇Z]

det Σ̂ZZ

(17)

where the value of Σ̂𝑇𝑇 , Σ̂𝑇Z , and Σ̂ZZ could be easily obtained with a given kernel matrix according to [10] like:

Σ̂𝑇Z = 1
𝑛
𝐺𝑇𝐺Z (18)

in which 𝐺Z is calculated as follows:

𝐺Z = (𝐼𝑛 −
1
𝑛
1𝑛1𝑇𝑛 )KZ(𝐼𝑛 −

1
𝑛
1𝑛1𝑇𝑛 ) (19)

where KZ is the kernel matrix with a lower-dimensional variable set Z ⊂ U, 𝐼𝑛 and 1𝑛 represent the 𝑛 × 𝑛 identity matrix and 𝑛 × 1
5

vector with all ones, respectively. And 𝐺𝑇 is calculated as follows:
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Algorithm 1 The LC-KMB Algorithm.

1: Input: Target 𝑇 , variable set U, training instances 𝔻, parameters 𝛼, 𝛽.

2: Calculate K𝜍 , K𝜏 , and 𝐺
Z

(Eq. (19)) with initialization of Z = U.

3: Repeat

4: 𝑋← argmin𝑋∈Z
Σ𝑇𝑇 |Z−{𝑋}

5: Z ← Z − {𝑋}.

6: Update K𝜍 , K𝜏 and 𝐺
Z

according to Eq. (19).

7: Until |Z| ≤ 𝛼|U|
8: Repeat

9: For each 𝑋𝑖 ∈ Z, determine the 𝜆𝑖 with Armijo rule,

and calculate 𝜔𝑖 ∶= 𝜔𝑖 − 𝜆𝑖 𝜕Θ𝜕𝜔𝑖 with Eq. (17) or (21)

10: Until Convergence of the objective function.

11: Z = {𝑋𝑖|𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝜔𝑖) > 𝛽}.

12: 𝔾 ← argmax𝔾 ScoreDAG(𝔻, 𝔾, Z ∪ {𝑇 }).
13: Output: Direct causes and effects in 𝔾.

(𝐺𝑇 )𝑖𝑗 = (K𝜏 )𝑖𝑗 +
1
𝑚

𝑚∑
𝑎=1

(K𝜏 )𝑎𝑗 −
1
𝑚

𝑚∑
𝑏=1

(K𝜏 )𝑖𝑏 +
1
𝑚2

𝑚∑
𝑎=1

𝑚∑
𝑏=1

(K𝜏 )𝑎𝑏, (20)

(M2) Estimation through trace of Σ𝑇𝑇 |Z : According to Eq. (3), we formalize the trace of Σ𝑇𝑇 |Z as:

Tr(Σ̂𝑇𝑇 |Z) = Tr
[
Σ̂𝑇𝑇 − Σ̂𝑇Z

(
Σ̂ZZ + 𝜎𝐼𝑚

)−1 Σ̂Z𝑇

]
(21)

where 𝜎𝐼𝑚 (𝜎 > 0) is a regularization term to enable operator inversion, similar to Tikhonov regularization [30]. Similar to the 
calculation of determinant, we substitute Σ̂𝑇𝑇 , Σ̂𝑇Z , and Σ̂ZZ into Eq. (21), and obtain:

Tr(Σ̂𝑇𝑇 |Z) = 1
𝑛
Tr

[
𝐺𝑇 −𝐺Z

(
𝐺Z + 𝑛𝜀𝑛𝐼𝑛

)−1
𝐺𝑇

]
(22)

in which the matrix can be further simplified as:

𝐺𝑇 −𝐺Z

(
𝐺Z + 𝑛𝜀𝑛𝐼𝑛

)−1
𝐺𝑇 =[

(
𝐺Z + 𝑛𝜀𝑛𝐼𝑛

)(
𝐺Z + 𝑛𝜀𝑛𝐼𝑛

)−1 −𝐺Z

(
𝐺Z + 𝑛𝜀𝑛𝐼𝑛

)−1]𝐺𝑇
=𝑛𝜀𝑛𝐼𝑛

(
𝐺Z + 𝑛𝜀𝑛𝐼𝑛

)−1
𝐺𝑇

(23)

And the estimated trace is calculated as:

Tr(Σ̂𝑇𝑇 |Z) = 𝜀𝑛 Tr
[
𝐺𝑇

(
𝐺Z + 𝑛𝜀𝑛𝐼𝑛

)−1]
(24)

where the 𝐺𝑇 and 𝐺Z can be calculated using Eq. (19) and Eq. (20).

The kernel MB representation promotes us to propose a Local Causal learning algorithm based on Kernel MB discovery (LC-KMB), 
as shown in Algorithm 1. The core concept behind LC-KMB is to initially learn the MB within the RKHS and subsequently employ a 
nonlinear score function to search for the optimal local MB structure. Thus, the LC-KMB algorithm consists of three primary steps:

(1) Lines 2-7: LC-KMB first use the value of Σ𝑇𝑇 |Z−{𝑋} to quickly remove some noncausal variables, in which the parameter 
𝛼 in line 7 is the percentage of the filtered variables; Line 4 involves evaluating the possibility of each variable as a potential MB 
variable, employing Equation Σ𝑇𝑇 |Z−{𝑋}, alongside the established monotonic partial ordering relation Σ𝑇𝑇 |U ⪯ Σ𝑇𝑇 |Z as substantiated 
in Eq. (9). This relationship essentially signifies that when a variable 𝑋 is excluded from the variable set, a smaller value of Σ𝑇𝑇 |Z−𝑋
corresponds to a lower likelihood of 𝑋 being the MB variable.

(2) Lines 8-11: In this part, the MB is learned by minimizing the objective function Σ𝑇𝑇 |Z as defined in Eq. (14). In line 9, 
Ω = 𝜔1,𝜔2,… ,𝜔𝑛 signifies whether a variable is included in the discovered MB, where 𝜔𝑖 = 1 indicates that 𝑋𝑖 is included, and 0 
otherwise. Consequently, the learned MB set is represented as Z = Ω ⊙U. The conditional covariance operator Σ𝑇𝑇 |Z is denoted as 
Θ(Ω), which can be computed using the determinant in Eq. (17) or the trace in Eq. (21), designated as LC-KMB𝑑 and LC-KMB𝑡, 
respectively. To utilize gradient descent for minimizing Θ(Ω), Ω (𝜔𝑖 ∈ 0,1) is replaced with 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(Ω) (𝜔𝑖 ∈ ℝ), and the Armijo 
rule is employed to adaptively determine the step sizes in each iteration. Line 11 outputs the discovered MB set, controlled by the 
parameter 𝛽.

(3) Lines 12: Building upon the learned MB, a nonlinear score function for Bayesian network structure learning (e.g., the score 
function proposed in [31]) can be utilized to construct a compact network centered around the target variable. Since the MB is learned 
within the mapped RKHS, it accounts for both pairwise and multivariate relationships, ensuring the inclusion of all direct causes and 
effects in the discovered MB. Consequently, in theory, any score function capable of identifying nonlinear relationships can uncover 
the correct structure. Despite these algorithms being computationally demanding, the size of the MB is significantly smaller than 
that of the entire variable set, resulting in a more efficient structure learning process, which differs from the considerations in global 
learning.

4. Experiments

In this section, we present the experimental findings derived from applying the LC-KMB algorithm to synthetic and real-world 
6

datasets. We start by demonstrating the effectiveness of the MB discovery subprocedure in LC-KMB in Section 4.1. Subsequently, 
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Table 1

Details of the standard benchmark Bayesian network data sets.

Data set Domain range #Variables #Edges Max In/Out Degree Min/Max |𝑃𝐶|
Alarm 2-4 37 46 4/5 1/6

Alarm3 2-4 111 149 4/5 1/6

Child 2-6 20 25 2/7 1/8

Child3 2-6 60 79 3/7 1/8

Gene 3-5 801 972 4/10 0/11

Insurance 2-5 27 52 3/7 1/9

Insurance3 2-5 81 163 4/7 1/9

Pigs 3-3 441 592 2/39 1/41

Sections 4.2 and 4.3 conduct extensive experiments on synthetic datasets and real-world causal network datasets, respectively, to 
assess the performance of local causal structure learning compared to state-of-the-art local and global causal learning algorithms. 
Finally, in Section 4.4, we perform an experiment on the electroencephalography (EEG) dataset, SEED [32], to further validate the 
efficacy of the direct causes and effects discovered by LC-KMB.

4.1. MB discovery in standard causal network

In this subsection, we delve into the impact of MB discovery accuracy on the performance of LC-KMB, given that LC-KMB identifies 
nonlinear causal relationships by learning MBs in RKHS. Specifically, we demonstrate the effectiveness and superiority of LC-KMB 
compared to existing MB discovery algorithms.

Dataset Description: To assess the accuracy of MB discovery, we selected ten commonly-used standard Bayesian network datasets 
for evaluation in this subsection. These datasets are chosen because the underlying causal mechanisms are known based on their 
adjacent matrix, allowing for a comparison between the learned MB and the true MB to calculate the 𝐹1 score. These networks 
are primarily derived from real-world decision support systems, covering various real-life applications in fields such as medicine, 
financial modeling, and animal breeding. Table 1 provides statistical information about these networks, reflecting differences in size, 
density, and data quality.

Compared Algorithms: In our evaluation, we compared six state-of-the-art MB discovery algorithms, each belonging to differ-

ent categories. Four constraint-based algorithms were included: the direct method IAMB [33], and the divide-and-conquer methods 
HITON-MB [34], CCMB [27], and SRMB [28]. These algorithms ascertain MB by examining conditional dependence and indepen-

dence within the variable set, using the 𝐺2-test [35] for conditional independence testing in our experiments. Additionally, two 
score-based MB discovery algorithms, SLL [24] and S2TMB [25], were selected.

Performance Comparison: All compared MB learning algorithms as well as LC-KMB𝑑 and LC-KMB𝑡 (only lines 1-11) are executed 
for each variable in these datasets with 500 instances and are repeated 10 times with different training instances. The commonly 
used evaluation metric 𝐹1 scores are chosen to measure the accuracy of the discovered MB. Fig. 2 shows the accuracy performance of 
various MB discovery algorithms on different datasets, which demonstrates that both the LC-KMB𝑑 and LC-KMB𝑡 consistently perform 
better than others on all datasets. By transforming the MB discovery problem to the minimization of the conditional covariance 
operator, LC-KMB can take more comprehensive variable causality into consideration. The identified multivariate nonlinear causality 
helps LC-KMB𝑑 and LC-KMB𝑡 beat the opponent. Moreover, we also notice that LC-KMB𝑡 achieves better performance than LC-KMB𝑑
in large-scale datasets, indicating a better estimation of the conditional covariance operator by calculating its trace in this case.

4.2. Local causal learning in synthetic nonlinear data

In this subsection, we evaluate the effectiveness of LC-KMB in the local causal learning task, specifically in nonlinear data, to 
validate the primary contributions of this paper.

Dataset Description: For this study, we generated datasets by sampling from synthetic Bayesian networks using the simulation 
methodology outlined in [36]. This approach allows us to assess the performance of different methods under controlled conditions, 
where we have precise knowledge of the underlying mechanism and all MB variables associated with each target. To test LC-KMB’s 
effectiveness in a nonlinear environment, we adjusted the proportion of nonlinear relationships (including multivariate relationships), 
denoted as 𝑝𝑛. The simulated Bayesian network consists of 50 variables and 1000 training samples, consistent across all experiment 
groups.

Compared Algorithms: We compare the proposed LC-KMB𝑑 and LC-KMB𝑡 with two state-of-the-art local learning approaches, 
CMB [3] and PCD-by-PCD [4], as well as two global causal structure learning algorithms, MMHC [2] and NOTEARS [17]. CMB and 
PCD-by-PCD are classic local learning methods based on MB discovery, using conditional independence tests to capture causality 
in the data. The 𝐺2-test [35] is the chosen conditional independence test for our experiments. MMHC and NOTEARS represent 
traditional and state-of-the-art global learning methods, respectively. MMHC constructs a causal skeleton using a conditional inde-

pendence test and employs a greedy search method alongside a Bayesian network scoring function to find the optimal structure, 
similar to LC-KMB. NOTEARS transforms the combinatorial optimization problem into a continuous one and solves it using gradient 
7

descent. For handling nonlinear cases, we adopted the scoring function proposed in [31].
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Fig. 2. The 𝐹1-score of discovered MB on standard causal network data sets.

Fig. 3. The 𝑆𝐻𝐷 and 𝐹𝐷𝑅 of local causal structure learning achieved by LC-KMB and other state-of-the-art local and global learning algorithms on synthetic nonlinear 
data.

Performance Comparison: In this experiment, we assess performance using three key metrics: 𝑆𝐻𝐷 (Structural Hamming 
Distance), 𝐹𝐷𝑅 (False Discovery Rate), and 𝑇 𝑖𝑚𝑒 (execution time). 𝑆𝐻𝐷 quantifies the total number of errors in the output structure, 
encompassing undirected edges, reversed edges, missing edges, and extra edges. A lower 𝑆𝐻𝐷 value indicates a more accurate 
structure. 𝐹𝐷𝑅 measures the number of false edges in the output divided by the total number of edges produced by the algorithm. It 
provides insight into the precision of the algorithm’s results. 𝑇 𝑖𝑚𝑒 indicates the average execution time of the algorithms, measured 
in seconds. A shorter execution time is preferable.

Fig. 3 illustrates the performance variations of each compared algorithm as the percentage of nonlinear relationships in the 
datasets changes. The results clearly demonstrate the consistent superiority of LC-KMB𝑑 and LC-KMB𝑡 over the other compared algo-

rithms. Notably, as the proportion of nonlinear relationships increases, the accuracy of existing algorithms tends to decline, although 
to varying degrees. In contrast, LC-KMB maintains stable performance across different experimental scenarios and consistently out-

performs other MB learning methods. While LC-KMB’s performance may experience a slight decline with higher proportions of 
nonlinear relationships, this decline is significantly smaller compared to the comparison algorithms. These observations suggest that 
minimizing the conditional covariance operator in MB discovery enhances LC-KMB’s ability to identify nonlinear and multivariate 
relationships, resulting in more accurate discoveries of direct causes and effects.

4.3. Local causal learning in standard causal network

To further demonstrate the effectiveness in real-world causal learning scenarios, we implement the aforementioned local causal 
learning algorithms on the standard causal network data. The same experimental settings and evaluation metrics are used in this 
8

subsection.
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Table 2

SHD comparison on the standard causal network datasets.

Datasets MMHC NOTEARS DAG-GNN PCD-by-PCD CMB LC-KMB𝑑 LC-KMB𝑡

Alarm 4.37 ± 0.21 3.19 ± 0.19 2.11 ± 0.14 1.42 ± 0.13 1.45 ± 0.14 1.09 ± 0.12 1.05 ± 0.10

Alarm3 5.17 ± 0.14 6.25 ± 0.11 5.19 ± 0.16 1.99 ± 0.08 1.94 ± 0.06 1.62 ± 0.11 1.53 ± 0.08

Child 3.47 ± 0.17 3.69 ± 0.21 2.35 ± 0.11 1.69 ± 0.19 1.42 ± 0.25 0.97 ± 0.18 1.04 ± 0.23

Child3 3.99 ± 0.17 3.71 ± 0.13 2.34 ± 0.11 1.75 ± 0.08 1.93 ± 0.12 1.34 ± 0.09 1.32 ± 0.11

Gene - - - - - 0.81 ± 0.04 0.78 ± 0.03

Insurance 5.74 ± 0.25 5.11 ± 0.17 3.94 ± 0.18 2.45 ± 0.21 2.59 ± 0.20 2.40 ± 0.23 2.41 ± 0.19

Insurance3 4.73 ± 0.09 9.25 ± 1.25 6.99 ± 1.03 2.73 ± 0.09 3.05 ± 0.11 3.11 ± 0.05 2.65 ± 0.06

Pigs 6.93 ± 0.04 2.99 ± 0.06 - - - 0.89 ± 0.02 0.65 ± 0.03

Table 3

FDR comparison on the standard causal network datasets.

Datasets MMHC NOTEARS DAG-GNN PCD-by-PCD CMB LC-KMB𝑑 LC-KMB𝑡

Alarm 0.56 ± 0.05 0.49 ± 0.04 0.18 ± 0.04 0.21 ± 0.03 0.38 ± 0.07 0.15 ± 0.04 0.13 ± 0.03

Alarm3 0.62 ± 0.03 0.57 ± 0.03 0.25 ± 0.02 0.23 ± 0.03 0.41 ± 0.04 0.21 ± 0.03 0.20 ± 0.02

Child 0.46 ± 0.04 0.69 ± 0.06 0.28 ± 0.11 0.35 ± 0.09 0.36 ± 0.12 0.23 ± 0.07 0.25 ± 0.06

Child3 0.44 ± 0.02 0.53 ± 0.01 0.31 ± 0.02 0.33 ± 0.03 0.32 ± 0.02 0.29 ± 0.02 0.33 ± 0.01

Gene - - - - - 0.36 ± 0.01 0.33 ± 0.01

Insurance 0.69 ± 0.04 0.72 ± 0.05 0.41 ± 0.09 0.35 ± 0.05 0.39 ± 0.08 0.39 ± 0.07 0.37 ± 0.07

Insurance3 0.45 ± 0.01 0.91 ± 0.02 0.47 ± 0.01 0.49 ± 0.02 0.41 ± 0.02 0.45 ± 0.00 0.45 ± 0.01

Pigs 0.95 ± 0.00 0.81 ± 0.00 - - - 0.56 ± 0.00 0.51 ± 0.00

Table 4

Time-efficiency (in seconds) comparison on the standard causal network datasets.

Datasets MMHC NOTEARS DAG-GNN PCD-by-PCD CMB LC-KMB𝑑 LC-KMB𝑡

Alarm 2.05 394.52 358.74 0.54 0.56 0.84 0.84

Alarm3 156.73 4936.27 5881.34 1.02 0.98 11.27 11.25

Child 1.26 74.35 92.81 0.42 0.69 0.76 0.74

Child3 107.24 1431.29 1360.78 0.31 0.30 1.98 2.01

Gene - - - - - 32.13 36.74

Insurance 0.68 247.25 189.36 0.45 0.51 0.64 0.64

Insurance3 158.27 5431.25 7588.34 1.25 1.27 8.43 7.89

Pigs 102.75 26193.87 - - - 15.25 12.12

Performance Comparison: Tables 2, 3, 4 summarize the 𝑆𝐻𝐷, 𝐹𝐷𝑅, and 𝑇 𝑖𝑚𝑒 on the eight causal networks with 1,000 
training instances, respectively. The Tables present the results in the format of 𝐴 ±𝐵, where 𝐴 indicates the average results and 𝐵
represents the standard deviation. The best outcomes in each configuration are highlighted in bold. The symbol “-” signifies that 
the algorithm was unable to generate the output for the corresponding networks within an eight-hour timeframe. We can conclude 
from the experimental results that LC-KMB𝑑 and LC-KMB𝑡 are significantly better than the state-of-the-art local and global causal 
learning algorithms. Specifically, LC-KMB𝑑 and LC-KMB𝑡 outperform all comparing algorithms in terms of 𝑆𝐻𝐷 and 𝐹𝐷𝑅 on all 
datasets except Insurance. On Insurance, LC-KMB𝑑 and LC-KMB𝑡 are slightly worse than PCD-by-PCD but also achieve competitive 
performance. Since LC-KMB can simultaneously consider both linear and nonlinear causality, LC-KMB can retrieve more true positives 
in the discovered MB, which leads to a more accurate local causal structure. Compared with local causal learning methods PCD-by-

PCD and CMB, LC-KMB𝑑 and LC-KMB𝑡 need to consume more time on small-scale data to identify the local causal structure, which is 
spent in nonlinear relation identifications. But this disadvantage reverses in large-scale data, where all other comparing algorithms 
can not complete the task within eight hours except LC-KMB𝑑 and LC-KMB𝑡. Additionally, LC-KMB𝑑 and LC-KMB𝑡 possess significant 
superiority compared with the three global learning methods, in terms of both accuracy and time efficiency, which demonstrates the 
practicability of the proposed methods.

4.4. Application in real-world EEG data

In this subsection, we demonstrate the effectiveness of LC-KMB in real-world emotion recognition tasks.

Dataset Description: To evaluate the effectiveness of LC-KMB in real-world applications, we applied it to identify direct causes 
and effects in the SEED dataset [32]. This dataset consists of electroencephalography (EEG) signals recorded by 62-channel symmet-

rical electrodes, with the positions of these electrodes depicted in Fig. 4(a). The dataset comprises 310 features, corresponding to 
five frequency bands (Delta, Theta, Alpha, Beta, and Gamma) recorded from each symmetrical electrode. The target attribute for this 
evaluation is the class attribute denoted as 𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑠, which includes three values: positive, neutral, and negative. The SEED dataset 
contains data from 15 subjects, representing the emotional data of 15 individuals, with each subject contributing 3,394 samples, 
9

consisting of 1,170 positive, 1,104 neutral, and 1,120 negative samples.
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Fig. 4. (a) is the layout of 62 channel symmetrical electrodes on the EEG. (b) and (c) provide the profiles of the top 20 variables with the highest frequency of 
occurrences from the Beta and Gamma frequency bands. The result is consistent with previous findings in [37].

Performance Demonstration: In this experiment, we employ LC-KMB to identify the variables directly associated with the 
emotion recognition task among the 310 features corresponding to different channels and frequency bands. Specifically, we aim to 
identify the direct causes and direct effects of the target variable. To validate the effectiveness of LC-KMB, we compare the results 
obtained with the ESI NeuroScan System as reported in a previous study [37]. We randomly select 1000 samples from the three 
classes and apply LC-KMB to search for the local causal structure of the target variable. By repeating this process for each subject, we 
obtain 15 subsets of causal variables, which include the direct causes and effects of the target variable, 𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑠. From these subsets, 
we select the top 20 variables with the highest frequency of occurrences as the direct causes and effects of 𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑠. The positions 
of these selected variables are illustrated in Fig. 4. By analyzing Fig. 4, we can deduce that the top 20 important variables belong to 
two frequency bands, namely Gamma and Beta. Furthermore, these direct causes and effects are distributed in the lateral temporal 
area, which aligns with previous findings reported in [37]. The EEG experiment provides evidence supporting the effectiveness of 
LC-KMB in identifying direct causes and effects.

5. Conclusion

In this paper, we have addressed a crucial gap in existing local causal learning techniques by introducing a novel approach that 
overcomes limitations in identifying nonlinear and multivariate causal relationships. Our proposed method, LC-KMB, combines the 
power of reproducing kernel Hilbert space and the concept of conditional covariance operator to redefine local causal learning. By 
emphasizing the discovery of the Markov boundary (MB) through the minimization of the conditional covariance operator, we have 
achieved a breakthrough in capturing both linear and nonlinear causality within local causal structures.

The key strengths of our approach lie in its ability to bridge the gap between linear and nonlinear causal relationships and in its 
successful application to local causal structure learning. LC-KMB is not only the first algorithm to offer nonlinear local causal learning, 
but it also outperforms existing methods by a significant margin, as demonstrated through extensive experimentation on synthetic 
and real-world datasets. This performance improvement is attributed to the synergy between our kernel-based MB discovery strategy 
and the nonlinear Bayesian network score function, which collectively enable the identification of more accurate and realistic local 
causal structures.

Our contribution extends beyond the algorithm itself. By introducing the concept of kernel-based MB discovery, we provide a 
fresh perspective on tackling the intricate problem of local causal learning, and our successful results add a valuable dimension to the 
existing literature. Researchers and practitioners in the field of causal inference can benefit from our method’s capacity to capture 
complex causal relationships in local structures. Furthermore, our work opens doors to the integration of kernel techniques into the 
broader causal inference landscape, inspiring the development of novel methods that merge kernel approaches with other learning 
paradigms.

However, we acknowledge some limitations in our work that merit discussion. While LC-KMB is a pioneering step in nonlinear 
local causal learning, it is not exempt from challenges. (1) The computational complexity associated with the kernel-based MB discov-

ery strategy can still be demanding, especially for larger datasets. Additionally, although our method significantly reduces the search 
space by focusing on the MB, there might be situations where further optimization can be explored to enhance efficiency. (2) LC-KMB 
has been developed and rigorously tested within the context of well-structured data that adhere to typical assumptions of causality. 
However, it is not currently equipped to handle data with missing values, semi-supervised settings, imbalanced distributions, or 
scenarios involving specific domain characteristics or small sample sizes.

As for future work, several promising avenues are worth exploring. First, the scalability of LC-KMB could be addressed through 
parallel computing or approximations, enabling the application of the method to even larger datasets. Second, while we have demon-

strated the effectiveness of LC-KMB for local causal structure learning, its potential for applications beyond structure discovery, such 
as causal effect estimation and intervention planning, should be investigated. Third, extending LC-KMB’s applicability to more di-

verse data scenarios is an exciting avenue for future research. This involves exploring ways to adapt the method to handle missing 
10

data, accommodate unbalanced distributions, and leverage small-sample settings. Additionally, investigating techniques to incorpo-
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rate domain-specific knowledge or expert constraints could enhance the algorithm’s robustness and extend its usability. Given the 
performance demonstrated in Section 4.4, future research could apply LC-KMB to more biomedical applications [38,39] so that the 
performance and interpretability of learning algorithms could be promoted by causality.
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